Skip to main content
Log in

Thermally activated phase transitions in Fe-Ni core-shell nanoparticles

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Fe-Ni core-shell nanoparticles are versatile functional materials, and their thermal stabilities are crucial for their performances in operating conditions. In this study, the thermodynamic behaviors of Fe-Ni core-shell nanoparticles are examined under continuous heating. The solid-solid phase transition from body centered cubic (bcc) to face centered cubic (fcc) in the Fe core is identified. The transition is accompanied with the generation of stacking faults around the core-shell interface, which notably lowers the melting points of the Fe-Ni core-shell nanoparticles and causes even worse thermal stability compared with Ni ones. Moreover, the temperature of the structural transformation is shown to be tuned by modifying the Ni shell thickness. Finally, the stress distributions of the core and the shell are also explored. The relevant results could be helpful for the design, preparation, and utilization of Fe-based nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Amendola, P. Riello, and M. Meneghetti, Magnetic nanoparticles of iron carbide, iron oxide, iron@iron oxide, and metal iron synthesized by laser ablation in organic solvents, J. Phys. Chem. C 115(12), 5140 (2011)

    Article  Google Scholar 

  2. D. L. Huber, Synthesis, properties, and applications of iron nanoparticles, Small 1(5), 482 (2005)

    Article  Google Scholar 

  3. Z. Y. Zhou, N. Tian, J. T. Li, I. Broadwell, and S. G. Sun, Nanomaterials of high surface energy with exceptional properties in catalysis and energy storage, Chem. Soc. Rev. 40(7), 4167 (2011)

    Article  Google Scholar 

  4. Y. X. Chen, S. P. Chen, Z. Y. Zhou, N. Tian, Y. X. Jiang, S. G. Sun, Y. Ding, and Z. L. Wang, Tuning the shape and catalytic activity of Fe nanocrystals from rhombic dodecahedra and tetragonal bipyramids to cubes by electrochemistry, J. Am. Chem. Soc. 131(31), 10860 (2009)

    Article  Google Scholar 

  5. L. M. Lacroix, N. F. Huls, D. Ho, X. L. Sun, K. Cheng, and S. H. Sun, Stable single-crystalline body centered cubic Fe nanoparticles, Nano Lett. 11(4), 1641 (2011)

    Article  ADS  Google Scholar 

  6. A. K. Gupta and M. Gupta, Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications, Biomaterials 26(18), 3995 (2005)

    Article  Google Scholar 

  7. X. Zhao, W. Liu, Z. Q. Cai, B. Han, T. W. Qian, and D. Y. Zhao, An overview of preparation and applications of stabilized zero-valent iron nanoparticles for soil and groundwater remediation, Water Res. 100, 245 (2016)

    Article  Google Scholar 

  8. T. Phenrat, D. Schoenfelder, T. L. Kirschling, R. D. Tilton, and G. V. Lowry, Adsorbed poly(aspartate) coating limits the adverse effects of dissolved groundwater solutes on Fe0 nanoparticle reactivity with trichloroethylene, Environ. Sci. Pollut. Res. Int. 25(8), 7157 (2018)

    Article  Google Scholar 

  9. A. P. Douvalis, R. Zboril, A. B. Bourlinos, J. Tucek, S. Spyridi, and T. Bakas, A facile synthetic route toward air-stable magnetic nanoalloys with Fe-Ni/Fe-Co core and iron oxide shell, J. Nanopart. Res. 14(9), 1130 (2012)

    Article  ADS  Google Scholar 

  10. S. F. Moustafa and W. M. Daoush, Synthesis of nano-sized Fe-Ni powder by chemical process for magnetic applications, J. Mater. Process. Technol. 181(1–3), 59 (2007)

    Article  Google Scholar 

  11. P. Tartaj, M. P. Morales, S. Veintemillas-Verdaguer, T. González-Carreño, and C. J. Serna, The preparation of magnetic nanoparticles for applications in biomedicine, J. Phys. D Appl. Phys. 36(13), R182 (2003)

    Article  Google Scholar 

  12. S. K. Sanjay, A. K. Singh, K. Aranishi, and Q. Xu, Noble-metal-free bimetallic nanoparticle-catalyzed selective hydrogen generation from hydrous hydrazine for chemical hydrogen storage, J. Am. Chem. Soc. 133(49), 19638 (2011)

    Article  Google Scholar 

  13. S. A. Theofanidis, V. V. Galvita, H. Poelman, and G. B. Marin, Enhanced carbon-resistant dry reforming Fe-Ni catalyst: Role of Fe, ACS Catal. 5(5), 3028 (2015)

    Article  Google Scholar 

  14. Y. H. Tee, L. Bachas, and D. Bhattacharyya, Degradation of trichloroethylene by iron-based bimetallic nanoparticles, J. Phys. Chem. C 113(22), 9454 (2009)

    Article  Google Scholar 

  15. M. Rivero-Huguet and W. D. Marshall, Reduction of hexavalent chromium mediated by micro- and nano-sized mixed metallic particles, J. Hazard. Mater. 169(1–3), 1081 (2009)

    Article  Google Scholar 

  16. G. Bonny, R. C. Pasianot, and L. Malerba, Fe-Ni many-body potential for metallurgical applications, Model. Simul. Mater. Sci. Eng. 17(2), 025010 (2009)

    Article  ADS  Google Scholar 

  17. K. Vörtler, N. Juslin, G. Bonny, L. Malerba, and K. Nordlund, The effect of prolonged irradiation on defect production and ordering in Fe-Cr and Fe-Ni alloys, J. Phys.: Condens. Matter 23(35), 355007 (2011)

    Google Scholar 

  18. N. Anento, A. Serra, and Y. Osetsky, Effect of nickel on point defects diffusion in Fe-Ni alloys, Acta Mater. 132, 367 (2017)

    Article  Google Scholar 

  19. C. G. Zhang, K. Ma, N. Q. Zhao, and Z. H. Yuan, A core-shell strategy for improving alloy catalyst activity for continual growth of hollow carbon onions, Cryst. Growth Des. 18(12), 7470 (2018)

    Article  Google Scholar 

  20. Y. Qi, T. Cagin, W. L. Johnson, and W. A. III Goddard, Melting and crystallization in Ni nanoclusters: The mesoscale regime, J. Chem. Phys. 115(1), 385 (2001)

    Article  ADS  Google Scholar 

  21. R. Huang, Y. H. Wen, Z. Z. Zhu, and S. G. Sun, Thermal stability of platinum nanowires: a comparison study between single-crystalline and twinned structures, J. Mater. Chem. 21(47), 18998 (2011)

    Article  Google Scholar 

  22. Q. S. Mei and K. Lu, Melting and superheating of crystalline solids: from bulk to nanocrystals, Prog. Mater. Sci. 52(8), 1175 (2007)

    Article  Google Scholar 

  23. Y. Shibuta and T. Suzuki, Melting and nucleation of iron nanoparticles: A molecular dynamics study, Chem. Phys. Lett. 445(4–6), 265 (2007)

    Article  ADS  Google Scholar 

  24. R. Huang, Y. H. Wen, Z. Z. Zhu, and S. G. Sun, Structure and stability of platinum nanocrystals: From low-index to high-index facets, J. Mater. Chem. 21(31), 11578 (2011)

    Article  Google Scholar 

  25. C. Kittel, Introduction to Solid State Physics, John Wiley & Sons Press, 1956

  26. R. Huang, Y. H. Wen, Z. Z. Zhu, and S. G. Sun, Pt-Pd bimetallic catalysts: Structural and thermal stabilities of core-shell and alloyed nanoparticles, J. Phys. Chem. C 116(15), 8664 (2012)

    Article  Google Scholar 

  27. J. D. Honeycutt and H. C. Andersen, Molecular-dynamics study of melting and freezing of small Lennard-Jones clusters, J. Phys. Chem. 91(19), 4950 (1987)

    Article  Google Scholar 

  28. L. Sandoval, H. M Urbassek, and P. Entel, The Bain versus Nishiyama-Wassermann path in the martensitic transformation of Fe, New J. Phys. 11(10), 103027 (2009)

    Article  ADS  Google Scholar 

  29. R. Huang, S. F. Shao, X. M. Zeng, and Y. H. Wen, Diverse melting modes and structural collapse of hollow bimetallic core-shell nanoparticles: A perspective from molecular dynamics simulations, Sci. Rep. 4(1), 7051 (2015)

    Article  Google Scholar 

  30. R. Huang, Y. H. Wen, Z. Z. Zhu, and S. G. Sun, Atomicscale insights into structural and thermodynamic stability of Pd-Ni bimetallic nanoparticles, Phys. Chem. Chem. Phys. 18(14), 9847 (2016)

    Article  Google Scholar 

  31. C. Mottet, G. Rossi, F. Baletto, and R. Ferrando, Single impurity effect on the melting of nanoclusters, Phys. Rev. Lett. 95(3), 035501 (2005)

    Article  ADS  Google Scholar 

  32. D. Srolovitz, K. Maeda, V. Vitek, and T. Egami, Structural defects in amorphous solids Statistical analysis of a computer model, Philos. Mag. A 44(4), 847 (1981)

    Article  ADS  Google Scholar 

  33. Y. T. Cheng, and M. W. Verbrugge, The influence of surface mechanics on diffusion induced stresses within spherical nanoparticles, J. Appl. Phys. 104(8), 083521 (2008)

    Article  ADS  Google Scholar 

  34. V. I. Levitas and K. Samani, Size and mechanics effects in surface-induced melting of nanoparticles, Nat. Commun. 2(1), 284 (2011)

    Article  ADS  Google Scholar 

  35. H. Hasegawa and D. G. Pettifor, Microscopic theory of the temperature-pressure phase diagram of iron, Phys. Rev. Lett. 50(2), 130 (1983)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11474234 and 51871189).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rao Huang or Yu-Hua Wen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, JB., Huang, R. & Wen, YH. Thermally activated phase transitions in Fe-Ni core-shell nanoparticles. Front. Phys. 14, 63604 (2019). https://doi.org/10.1007/s11467-019-0932-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-019-0932-1

Keywords

Navigation