Skip to main content
Log in

Universal conductance fluctuations in Sierpinski carpets

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

We theoretically investigate the conductance fluctuation of two-terminal device in Sierpinski carpets. We find that, for the circular orthogonal ensemble (COE), the conductance fluctuation does not display a universal feature; but for circular unitary ensemble (CUE) without time-reversal symmetry or circular symplectic ensemble (CSE) without spin-rotational symmetry, the conductance fluctuation can reach an identical universal value of 0:74 ± 0:01(e2/h). We further find that the conductance distributions around the critical disorder strength for both CUE and CSE systems share the similar distribution forms. Our findings provide a better understanding of the electronic transport properties of the regular fractal structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and notes

  1. W. Ji, H. Q. Xu, and H. Guo, Quantum description of transport phenomena: Recent progress, Front. Phys. 9(6), 671 (2014)

    Article  Google Scholar 

  2. J. Zhuang, Y. Wang, Y. Zhou, J. Wang, and H. Guo, Impurity-limited quantum transport variability in magnetic tunnel junctions, Front. Phys. 12(4), 127304 (2017)

    Article  Google Scholar 

  3. H. Z. Lu and S. Q. Shen, Quantum transport in topological semimetals under magnetic fields, Front. Phys. 12(3), 127201 (2017)

    Article  Google Scholar 

  4. L. B. Altshuler, Fluctuations in the extrinsic conductivity of disordered conductors, JETP Lett. 41, 648 (1985)

    ADS  Google Scholar 

  5. P. A. Lee and A. D. Stone, Universal conductance fluctuations in metals, Phys. Rev. Lett. 55(15), 1622 (1985)

    Article  ADS  Google Scholar 

  6. P. A. Lee, A. D. Stone, and H. Fukuyama, Universal conductance fluctuations in metals: Effects of finite temperature, interactions, and magnetic field, Phys. Rev. B 35(3), 1039 (1987)

    Article  ADS  Google Scholar 

  7. C. W. J. Beenakker, Random-matrix theory of quantum transport, Rev. Mod. Phys. 69(3), 731 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  8. S. B. Kaplan and A. Hartstein, Universal conductance fluctuations in narrow Si accumulation layers, Phys. Rev. Lett. 56(22), 2403 (1986)

    Article  ADS  Google Scholar 

  9. A. García-Martín and J. J. Sáenz, Universal conductance distributions in the crossover between diffusive and localization regimes, Phys. Rev. Lett. 87(11), 116603 (2001)

    Article  ADS  Google Scholar 

  10. W. Ren, Z. Qiao, J. Wang, Q. Sun, and H. Guo, Universal spin-Hall conductance fluctuations in two dimensions, Phys. Rev. Lett. 97(6), 066603 (2006)

    Article  ADS  Google Scholar 

  11. Z. Qiao, J. Wang, Y. Wei, and H. Guo, Universal quantized spin-Hall conductance fluctuation in graphene, Phys. Rev. Lett. 101(1), 016804 (2008)

    Article  ADS  Google Scholar 

  12. M. Yu. Kharitonov and K. B. Efetov, Universal conductance fluctuations in graphene, Phys. Rev. B 78(3), 033404 (2008)

    Google Scholar 

  13. J. Wurm, A. Rycerz, I. Adagideli, M. Wimmer, K. Richter, and H. U. Baranger, Symmetry classes in graphene quantum dots: Universal spectral statistics, weak localization, and conductance fluctuations, Phys. Rev. Lett. 102(5), 056806 (2009)

    Article  ADS  Google Scholar 

  14. Z. Qiao, Y. Xing, and J. Wang, Universal conductance fluctuation of mesoscopic systems in the metal-insulator crossover regime, Phys. Rev. B 81(8), 085114 (2010)

    Article  ADS  Google Scholar 

  15. Z. M. Liao, B. H. Han, H. Z. Zhang, Y. B. Zhou, Q. Zhao, and D. P. Yu, Current regulation of universal conductance fluctuations in bilayer graphene, New J. Phys. 12(8), 083016 (2010)

    Article  ADS  Google Scholar 

  16. Z. Qiao, W. Ren, and J. Wang, Universal spin-Hall conductance fluctuations in two-dimensional mesoscopic systems, Mod. Phys. Lett. B 25(06), 359 (2011)

    Article  ADS  MATH  Google Scholar 

  17. Z. Li, T. Chen, H. Pan, F. Song, B. Wang, J. Han, Y. Qin, X. Wang, R. Zhang, J. Wan, D. Xing, and G. Wang, Two dimensional universal conductance fluctuations and the electron-phonon interaction of surface states in Bi2Te2Se microflakes, Sci. Rep. 2(1), 595 (2012)

    Article  ADS  Google Scholar 

  18. E. Rossi, J. H. Bardarson, M. S. Fuhrer, and S. Das Sarma, Universal conductance fluctuations in Dirac materials in the presence of long-range disorder, Phys. Rev. Lett. 109(9), 096801 (2012)

    Article  ADS  Google Scholar 

  19. Z.-G. Li, S. Zhang, and F.-Q. Song, Universal conductance fluctuations of topological insulators, Acta Physica Sinica 64(8), 97202 (2015)

    Google Scholar 

  20. L.-X. Wang, S. Wang, J.-G. Li, C.-Z. Li, D. P. Yu, and Z.-M. Liao, Universal conductance fluctuations in Dirac semimetal Cd3As2 nanowires, Phys. Rev. B 94, 161402(R) (2016)

    Article  ADS  Google Scholar 

  21. Y. Hu, H. Liu, H. Jiang, and X. C. Xie, Numerical study of universal conductance fluctuations in three-dimensional topological semimetals, Phys. Rev. B 96(13), 134201 (2017)

    Article  ADS  Google Scholar 

  22. Y. Q. Li, K. H. Wu, J. R. Shi, and X. C. Xie, Electron transport properties of three-dimensional topological insulators, Front. Phys. 7(2), 165 (2012)

    Article  Google Scholar 

  23. B. B. Mandelbrot, How long is the coast of Britain? Statistical self-similarity and fractional dimension, Science 156(3775), 636 (1967)

    Article  ADS  Google Scholar 

  24. B. B. Mandelbrot, Self-affine fractals and fractal dimension, Phys. Scr. 32(4), 257 (1985)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. R. Rammal, Nature of eigenstates on fractal structures, Phys. Rev. B 28(8), 4871 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  26. A. Chakrabarti and B. Bhattacharyya, Sierpinski gasket in a magnetic field: Electron states and transmission characteristics, Phys. Rev. B 56(21), 13768 (1997)

    Article  ADS  Google Scholar 

  27. X. R. Wang, Localization in fractal spaces: Exact results on the Sierpinski gasket, Phys. Rev. B 51(14), 9310 (1995)

    Article  ADS  Google Scholar 

  28. Y. Asada, K. Slevin, and T. Ohtsuki, Possible Anderson transition below two dimensions in disordered systems of noninteracting electrons, Phys. Rev. B 73(4), 041102 (2006)

    Article  ADS  Google Scholar 

  29. M. K. Schwalm and W. A. Schwalm, Length scaling of conductance distribution for random fractal lattices, Phys. Rev. B 54(21), 15086 (1996)

    Article  ADS  Google Scholar 

  30. Y. Liu, Z. Hou, P. M. Hui, and W. Sritrakool, Electronic transport properties of Sierpinski lattices, Phys. Rev. B 60(19), 13444 (1999)

    Article  ADS  Google Scholar 

  31. Z. Lin, Y. Cao, Y. Liu, and P. M. Hui, Electronic transport properties of Sierpinski lattices in a magnetic field, Phys. Rev. B 66(4), 045311 (2002)

    Article  ADS  Google Scholar 

  32. C. Y. Ho and C. R. Chang, Spin transport in fractal conductors with the Rashba spin–orbit coupling, Spin 02(02), 1250008 (2012)

    Article  Google Scholar 

  33. B. R. Lee, C. R. Chang, and I. Klik, Spin transport in multiply connected fractal conductors, Spin 04(03), 1450007 (2014)

    Article  ADS  Google Scholar 

  34. E. van Veen, S. Yuan, M. I. Katsnelson, M. Polini, and A. Tomadin, Quantum transport in Sierpinski carpets, Phys. Rev. B 93(11), 115428 (2016)

    Article  ADS  Google Scholar 

  35. M. Brzezińska, A. M. Cook, and T. Neupert, Topology in the Sierpiński–Hofstadter problem, Phys. Rev. B 98(20), 205116 (2018)

    Google Scholar 

  36. J. Shang, Y. Wang, M. Chen, J. Dai, X. Zhou, J. Kuttner, G. Hilt, X. Shao, J. M. Gottfried, and K. Wu, Assembling molecular Sierpiński triangle fractals, Nat. Chem. 7(5), 389 (2015)

    Google Scholar 

  37. S. N. Kempkes, M. R. Slot, S. E. Freeney, S. J. M. Zevenhuizen, D. Vanmaekelbergh, I. Swart, and C. M. Smith, Design and characterization of electrons in a fractal geometry, Nat. Phys. 15(2), 127 (2019)

    Article  Google Scholar 

  38. Z. Qiao, W. Ren, J. Wang, and H. Guo, Low-field phase diagram of the spin Hall effect in the mesoscopic regime, Phys. Rev. Lett. 98(19), 196402 (2007)

    Article  ADS  Google Scholar 

  39. S. Datta, Electronic Transport in Mesoscopic Systems, Cambridge: Cambridge University Press, England, 1995

    Book  Google Scholar 

  40. It should be noted that the rms(G) in Figs. 3 and 4 seem not to be exactly same mainly due to discrete distribution of disorder strength W in numerical method. In order to reasonably describe the universal conductance fluctuations, we use a range of [−0.1, 0.1] (e 2/h) based on the UCF value. The same method also used in other papers (Refs. [10–12]).

  41. In circular orthogonal ensemble, there does not exist a metal-insulator transition when system dimension below according to the scaling theory of localization. Therefore, there is not UCF in circular orthogonal ensemble.

Download references

Acknowledgments

This work was financially supported by the National Key Research and Development Program (Grant Nos. 2017YFB0405703 and 2016YFA0301700), the National Natural Science Foundation of China (Grant No. 11474265), and Anhui Initiative in Quantum Information Technologies. We thank the supercomputing service of AM-HPC and the Supercomputing Center of USTC for providing the high-performance computing resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen-Hua Qiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, YL., Qiao, ZH. Universal conductance fluctuations in Sierpinski carpets. Front. Phys. 14, 63603 (2019). https://doi.org/10.1007/s11467-019-0919-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-019-0919-y

Keywords

Navigation