Skip to main content
Log in

A collection of 505 papers on false or unconfirmed ferroelectric properties in single crystals, ceramics and polymers

  • Viewpoint
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

An Erratum to this article was published on 29 June 2019

This article has been updated

Abstract

This collection presents 505 papers on ferroelectricity in single crystals, ceramics and polymers in which pointed or elliptical hysteresis loops would testify to their ferroelectric properties. In some papers, the authors ensure that ferroelectricity can occur even in materials that do not have a polar axis of symmetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 29 June 2019

    In the original publication of the article, there are some mistakes regarding the sequence of references. Some references are mislocated. Here is the new version of the full paper.

References

  1. J. Valasek, Piezoelectric and allied phenomena in Rochelle salt, Phys. Rev. 17(4), 475 (1921)

    Article  ADS  Google Scholar 

  2. F. Jona and G. Shirane, Ferroelectric Crystals, Pergamon Press Ltd., Oxford, 1962

    Google Scholar 

  3. J. F. Scott, Ferroelectrics go bananas, J. Phys.: Condens. Matter 20(2), 021001 (2008)

    ADS  Google Scholar 

  4. A. Loidl, S. Krohns, J. Hemberger, and P. Lunkenheimer, Bananas go paraelectric, J. Phys.: Condens. Matter 20(19), 191001 (2008)

    ADS  Google Scholar 

  5. L. Pintilie and M. Alexe, Ferroelectric-like hysteresis loop in nonferroelectric system, Appl. Phys. Lett. 87(11), 112903 (2005)

    Article  ADS  Google Scholar 

  6. H. Kliem and B. Martin, Pseudo-ferroelectric properties by pace charge polarization, J. Phys.: Condens. Matter 20(32), 321001 (2008)

    Google Scholar 

  7. B. Martin and H. Kliem, Electrode effects in solid electrolyte capacitors, J. Appl. Phys. 98(7), 074102 (2005)

    Article  ADS  Google Scholar 

  8. H. Diamant, K. Drenck, and R. Pepinsky, Bridge for accurate measurement of ferroelectric hysteresis, Rev. Sci. Instr. 28(1), 30 (1957)

    Article  ADS  Google Scholar 

  9. L. Corbellini, J. Plathier, C. Lacroix, C. Harnagea, D. Menard, and A. Pignolet, Hysteresis loops revisited: An efficient method to analyze ferroic materials, J. Appl. Phys. 120(12), 124101 (2016)

    Article  ADS  Google Scholar 

  10. M. Fukunaga and Y. Noda, New technique for measuring ferroelectric and antiferroelectric hysteresis loops, J. Phys. Soc. Jpn. 77(6), 064706 (2008)

    Article  ADS  Google Scholar 

References for Part I

  1. V. Chithambaram, S. Jerome Das, S. Krishnan, M. Basheer Ahamed, and R. Arivudai Nambi, Growth and characterization of urea-oxalic acid crystals by solution growth technique, Eur. Phys. J. Appl. Phys. 64(2), 20201 (2013)

    Article  ADS  Google Scholar 

  2. R. E. Vizhi, R. Dhivya, and D. R. Babu, Synthesis, grown, optical and mechanical studies of ferroelectric urea-oxalic acid single crystals, J. Cryst. Growth 452, 213 (2016)

    Article  ADS  Google Scholar 

  3. R. Dhivya, R. E. Vizhi, and D. R. Babu, Investigation on nucleation kinetics, growth and characterization of urea oxalic acid — ferroelectric single crystal, J. Cryst. Growth 468, 84 (2017)

    Article  ADS  Google Scholar 

  4. S. Krishnan, J. Raj, R. Robert, and A. Ramanand, Growth and characterization of succinic acid single crystals, Cryst. Res. Technol. 42(11), 1087 (2007)

    Article  Google Scholar 

  5. S. Krishnan, C. J. Raj, and S. J. Das, Growth and characterization of novel ferroelectric urea-succinic acid single crystal, J. Cryst. Growth 310(14), 3313 (2008)

    Article  ADS  Google Scholar 

  6. R. Dhivya, R. Ezhil Vizhi, and D. R. Babu, Nucleation kinetic of urea succinic acid — ferroelectric single crystal, AIP Conf. Proc. 1665, 100020 (2016)

    Google Scholar 

  7. B. K. Singh, N. Sinha, N. Singh, K. Kumar, M. K. Gupta, and B. Kumar, Structural, dielectric, optical and ferroelectric property of urea succinic acid crystals grown in aqueous solution containing maleic acid, J. Phys. Chem. Solids 71(12), 1774 (2010)

    Article  ADS  Google Scholar 

  8. R. Priya, S. Krishnan, G. Bhagavannarayana, and S. Jerome Das, Growth and characterization of novel ferroelectric bis (methylammonium) tetrachlorozincate, Physica B 406(8), 1345 (2011)

    Article  ADS  Google Scholar 

  9. S. Suresh, A. Ramanand, D. Jayaraman, S. M. Priya, and R. Vasanthakumari, Synthesis, structural and dielectric properties of ferroelectric dichloridoglycine zinc dihydrate single crystals, J. Miner. Mater. Charact. Eng. 10(04), 339 (2011)

    Google Scholar 

  10. B. Uma, Rajnikant, K. Sakthi Murugesan, S. Krishnan, and B. Milton Boaz, Growth, structural, optical, thermal and dielectric properties of a novel semi-organic nonlinear optical crystal: Dichloro-diglycine zinc II, Progr. Nat. Sci.: Mater. Inter. 24, 378 (2014)

    Article  Google Scholar 

  11. M. Shakir, B. K. Singh, B. Kumar, and G. Bhagavannarayana, Ferroelectricity in glycine picrate: An astonishing observation in a centrosymmetric crystal, Appl. Phys. Lett. 95(25), 252902 (2009)

    Article  ADS  Google Scholar 

  12. C. Balarew, V. Spasov, and S. Tepavitcharova, Pyro- and ferroelectric properties of nGly·MeCl2·2H2O (Me = Mn, Co; n = 1, 2), Ferroelectrics 158(1), 157 (1994)

    Article  Google Scholar 

  13. P. Justin and K. Anitha, Influence of formic acid on optical and electrical properties of glycine crystal, Mater. Res. Express 4(11), 115101 (2017)

    Article  ADS  Google Scholar 

  14. M. Ben Bechir, K. Karoui, M. Tabellout, K. Guidara, and A. Ben Rhaiem, Electric and dielectric studies of the [N(CH3)3H]2CuCl4 compound at low temperature, J. Alloys. Compounds 588, 551 (2014)

    Article  Google Scholar 

  15. J. Y. Park, J. H. Park, Y. K. Jeong, and H. M. Jang, Dynamic magnetoelectric coupling in “electronic ferroelectric” LuFe2O4, Appl. Phys. Lett. 91(15), 152903 (2007)

    Article  ADS  Google Scholar 

  16. E. Jerusha, R. I. Shyam Kumar, S. S. Kirupavathy, and R. Gopalakrishnan, Investigations on the growth and characterisation of an isomorphous ammonium tetroxalate dihydrate superacid crystal, Optik (Stuttg.) 127(9), 3896 (2016)

    Article  ADS  Google Scholar 

  17. M. Ben Bechir, K. Karoui, A. Bulou, M. Tabellout, K. Guidara, and A. Ben Rhaiem, [N(CH3)3H]2ZnCl4: Ferroelectric properties and characterization of phase transitions by Raman spectroscopy, J. Appl. Phys. 116(21), 214104 (2014)

    Article  ADS  Google Scholar 

  18. S. Yadava, B. K. Pandey, S. P. Dubey, and J. P. Seth, Ferroelectricity and phase transitions in disodium hydrogen orthophosphste, Asian J. Chem. 20, 2051 (2008)

    Google Scholar 

  19. H. M. Mande and P. S. Ghalsasi, Designing chiral, propolar structures for observing ferroelectricity: Molecular analogue of KNO3, Cryst. Growth Des. 16(1), 3 (2016)

    Article  Google Scholar 

  20. C. C. Desai and A. H. Patel, Some aspects of the electrical conductivity of ferroelectric rubidium hydrogen tartrate single crystals, J. Mater. Sci. Lett. 6(9), 1066 (1987)

    Article  Google Scholar 

  21. H. Cui, Z. Wang, K. Takahashi, Y. Okano, H. Kobayashi, and A. Kobayashi, Ferroelectric porous molecular crystal, [Mn3(HCOO)6](C2H5OH), exhibiting ferrimagnetic transition, J. Am. Chem. Soc. 128(47), 15074 (2006)

    Article  Google Scholar 

  22. H. Tokoro and S. Ohkoshi, Novel magnetic functionalities of Prussian blue analogs, Dalton Trans. 40(26), 6825 (2011)

    Article  Google Scholar 

  23. V. Subhashini, S. Ponnusamy, and C. Muthamizhchelvan, Growth, optical, thermal, piezo and ferroelectric studies on ethylenediamine ditartrate dihydrate (EDADTDH) single crystals, J. Cryst. Growth 312(7), 1040 (2010)

    Article  ADS  Google Scholar 

  24. S. Kalyanaraman, P. M. Shajinshinu, and S. Vijayalakshmi, Refractive index, band gap energy, dielectric constant and polarizability calculations of ferroelectric Ethylenediaminium Tetrachlorozincate crystal, J. Phys. Chem. Solids 86, 108 (2015)

    Article  ADS  Google Scholar 

  25. M. Loganayaki and P. Murugakoothan, Studies on dielectric and ferroelectric behaviour of L-alanine single crystal, Asian J. Chem. 23, 5089 (2011)

    Google Scholar 

  26. B. Want and R. Samad, Dielectric, ferroelectric and optical behaviour of terbium hydrogen tartrate trihydrate crystals, J. Mater. Sci. 49(14), 4891 (2014)

    Article  ADS  Google Scholar 

  27. G. Ray, S. Kumar, N. Sinha, and B. Kumar, Enhanced dielectric piezo-/ferro-/electric properties of dye doped sodium acid phthalate crystal, Curr. Appl. Phys. 17(5), 813 (2017)

    Article  ADS  Google Scholar 

  28. E. Jerusha, R. I. S. Kumar, S. S. Kirupavathy, and R. Gopalakrishnan, Investigations on the growth and characterisation of an isomorphous ammonium tetroxalate dihydrate superacid crystal, Optik (Stuttg.) 127(9), 3896 (2016)

    Article  ADS  Google Scholar 

  29. B. Uma, K. S. Murugesan, S. Krishnan, S. J. Das, and B. M. Boaz, Optical and dielectric studies on organic nonlinear optical 2-furoic acid single crystals, Optik (Stuttg.) 124(17), 2754 (2013)

    Article  ADS  Google Scholar 

  30. I. B. Hadj Sadok, F. Hajlaoui, K. Karoui, N. Audebrand, T. Roisnel, and N. Zouari, Crystal structure, optical and electrical properties of metal-halide compound [C7H16N2][ZnCl4], J. Phys. Chem. Solids 129, 71 (2019)

    Article  ADS  Google Scholar 

  31. O. M. Mailoud, A. H. Elsayed, H. A. El Fetouh, and A. H. A. ELazm, Synthesis and characterization of paramagnetic isotropic glycine manganese chloride single crystal with various dopant concentrations, Results Phys. 12, 925 (2019)

    Article  ADS  Google Scholar 

  32. N. Bhuvaneswari and K. Venkatachalam, Structural, vibrational and physical properties on tetramethyammonium cadmium bromide ferroelectric single crystals, Asian J. Chem. 30(2), 386 (2018)

    Article  Google Scholar 

  33. S. Yadava, B. K. Pandey, S. P. Dubey, and R. N. Gupta, Dielectric behaviour of lead nitrate with its phase transition, Asian J. Chem. 20, 731 (2008)

    Google Scholar 

  34. C. C. Desai and K. N. Patel, Synthesis and characterization of ferroelectric magnesium hydrogen phosphate single crystals, Cryst. Res. Technol. 24(7), 681 (1989)

    Article  Google Scholar 

  35. R. Dhivya, R. Ezhil Vizhi, and D. Rajan Babu, Investigation on nucleation kinetics, growth and characterization of urea oxalic acid — ferroelectric single crystal, J. Cryst. Growth 468, 84 (2017)

    Article  ADS  Google Scholar 

  36. S. Krishnan, C. J. Raj, S. Dinakaran, R. Uthrakumar, R. Robert, and S. J. Das, Optical, thermal, dielectric and ferroelectric behaviour of sodium acid phthalate (SAP) single crystals, J. Phys. Chem. Solids 69(11), 2883 (2008)

    Article  ADS  Google Scholar 

  37. C. C. Stoumpos, Ch. D. Malliakas, and M. G. Kanatzidis, Semiconducting tin and lead iodide perovskites with organic cations: Phase transitions, high mobilities, and near-infrared photoluminescent properties, Inorg. Chem. 52(15), 9019 (2013)

    Article  Google Scholar 

  38. S. Fujimoto, N. Yasuda, H. Hibino, and P. S. Narayanan, Ferroelectricity in lithium potassium sulphate, J. Phys. D Appl. Phys. 17(2), L35 (1984)

    Article  ADS  Google Scholar 

  39. J. Dalal and B. Kumar, Remarkable enhancement in dielectric, piezoelectric, ferroelectric and SHG properties by iron doping in sodium para-nitrophenolate dihydrate single crystals, Mater. Lett. 165, 99 (2016)

    Article  Google Scholar 

  40. J. Dalal, N. Sinha, H. Yadav, and B. Kumar, Structural, electrical, ferroelectric and mechanical properties with Hirshfeld surface analysis of novel NLO semiorganic sodium p-nitrophenolate dihydrate piezoelectric single crystal, RSC Advances 5(71), 57735 (2015)

    Article  Google Scholar 

  41. A. C. Sajikumar, S. Vinu, and C. Krishnan, Studies on structural, optical and thermal properties of L-histidine doped potassium hydrogen phthalate single crystal, Inter. J. Engn. Res. Technol. 4(01), 525 (2015)

    Google Scholar 

  42. A. C. Sajikumar, S. Vinu, and C. Krishnan, Growth and characterization of barium doped potassium hydrogen phthalate single crystal, Int. J. Eng. Res. Appl. 5, 50 (2015)

    Google Scholar 

  43. R. E. Vizhi and D. R. Babu, A study on structural, optical, mechanical and ferroelectric properties of triglycine barium nitrate single crystals, Ferroelectr. Lett. Sect. 40(1–3), 1 (2013)

    Article  Google Scholar 

  44. V. Duraikkan, S. A. Bahadur, N. Nallamuthu, S. Athimoolam, and A. Manikandan, Investigation of phase transition in some ferroelectrics calcium and zinc doped diammonium dibromodichlorinate, J. Inorg. Organomet. Polym. Mater. 27(1), 363 (2017)

    Article  Google Scholar 

  45. S. C. Abrahams, J. Ravez, A. Simon, A. Reller, and H. R. Oswald, Cu(OH)2: A new ferroelectric, J. Appl. Cryst. 28(5), 594 (1995)

    Article  Google Scholar 

  46. A. C. Y. Pan, H. D. Mai, and G. Y. Yang, A new zeotype borogermanate β-K2B2Ge3O10: Synthesis, structure, property and conformational polymorphism, Microporous Mesoporous Mater. 168, 183 (2013)

    Article  Google Scholar 

  47. T. G. J. Cao, W. H. Fang, S. T. Zheng, and G. Y. Yang, (CH3NH3)2 [Ge(B4O9)]: An organically-templated chiral borogermanate with second-order nonlinear and ferroelectric properties, Inorg. Chem. Commun. 13(9), 1047 (2010)

    Article  Google Scholar 

  48. J. H. Zhang, F. Kong, and J. G. Mao, Ba3 [Ge2B7O1 6(OH)2](OH)(H2O) and Ba3Ge2B6O16: Novel alkaline-earth borogermanates based on two types of polymeric borate units and GeO4 tetrahedra, Inorg. Chem. 50(7), 3037 (2011)

    Article  Google Scholar 

  49. C. Jiang, N. Zhong, C. Luo, H. Lin, Y. Zhang, H. Peng, and C. G. Duan, (Diisopropylammonium)2MnBr4: A multifunctional ferroelectric with efficient green-emission and excellent gas sensing properties, Chem. Commun. (Camb.) 53(44), 5954 (2017)

    Article  Google Scholar 

  50. P. S. L. Mageshwari, R. Priya, S. Krishnan, V. Joseph, and S. J. Das, Optical, dielectric and ferroelectric behaviour on doped lithium sulphate crystals, Optik (Stuttg.) 125(10), 2289 (2014)

    Article  ADS  Google Scholar 

  51. S. Moitra and T. Kar, Second harmonic generation of a new nonlinear optical material L-valine hydrobromide, J. Cryst. Growth 310(21), 4539 (2008)

    Article  ADS  Google Scholar 

  52. N. Tyagi, N. Sinha, H. Yadav, and B. Kumar, Growth, morphology, structure and characterization of L-histidinium dihydrogen arsenate orthoarsenic acid single crystal, Acta Crystallogr. B 72(4), 593 (2016)

    Article  Google Scholar 

  53. K. Thukral, N. Vijayan, B. Singh, I. Bdikin, D. Haranath, K. K. Maurya, J. Philip, H. Soumya, P. Sreekanth, and G. Bhagavannarayana, Growth, structural and mechanical analysis of a single crystal of L-prolinium tartrate: A promising material for nonlinear optical applications, CrystEngComm 16(39), 9245 (2014)

    Article  Google Scholar 

  54. S. Kumar, N. Sinha, H. Yadav, and B. Kumar, Growth, structural, dielectric, ferroelectric, and mechanical properties of L-prolinium tartrate single crystal, J. Mater. Sci. 51(16), 7614 (2016)

    Article  ADS  Google Scholar 

  55. U. Charoen-In and P. Manyum, Growth of ferroelectric crystals: 4-aminopyridinium hydrogen maleate single crystals and their characterization, Ceram. Int. 41, S76 (2015)

    Article  Google Scholar 

  56. D. W. Fu, Y. M. Song, G. X. Wang, Q. Ye, R. G. Xiong, T. Akutagawa, T. Nakamura, P. W. H. Chan, and S. D. Huang, Dielectric anisotropy of a homochiral trinuclear nickel(II) complex, J. Am. Chem. Soc. 129(17), 5346 (2007)

    Article  Google Scholar 

  57. Z. Sun, T. Chen, J. Luo, and M. Hong, Bis(imidazolium) L-tartrate: A hydrogen-bonded displacive-type molecular ferroelectric material, Angew. Chem. Int. Ed. 51(16), 3871 (2012)

    Article  Google Scholar 

  58. K. Senthilkumar, S. M. Babu, B. Kumar, and G. Bhagavannarayana, Effect of rare earth ions on the properties of glycine phosphite single crystals, J. Cryst. Growth 362, 343 (2013)

    Article  ADS  Google Scholar 

  59. K. Senthilkumar, S. M. Babu, B. Kumar, and G. Bhagavannarayana, Improvement in structural, dielectric, ferroelectric and mechanical properties in metal ions doped glycine phosphite single crystals, Ferroelectrics 437(1), 126 (2012)

    Article  Google Scholar 

  60. A. Shanthi, C. Krishnan, and P. Selvarajan, Studies on growth and characterization of a novel nonlinear optical and ferroelectric material, N,N-dimethylurea picrate single crystal, J. Cryst. Growth 393, 7 (2014)

    Article  ADS  Google Scholar 

  61. B. Uma, R. S. Selvaraj, S. Krishnan, and B. M. Boaz, Growth and characterization of a novel organic nonlinear optical material: L-alanine 2-furoic acid, Optik (Stuttg.) 125(2), 651 (2014)

    Article  ADS  Google Scholar 

  62. J. Dalal and B. Kumar, Bulk crystal growth, optical, mechanical and ferroelectric properties of new semiorganic nonlinear optical and piezoelectric Lithium nitrate monohydrate oxalate single crystal, Opt. Mater. 51, 139 (2016)

    Article  ADS  Google Scholar 

  63. C. F. Sun, C. L. Hu, and J. G. Mao, PbPt(IO3)6(H2O): A new polar material with two types of stereoactive lone-pairs and a very large SHG response, Chem. Commun. (Camb.) 48(35), 4220 (2012)

    Article  Google Scholar 

  64. Y. Yamamura, E. Saito, H. Saitoh, N. Hoshino, and K. Saito, New organic ferroelectrics: Cocrystal of 5, 5′-dimethyl-2, 2′-bipyridine and bromanilic acid, Chem. Lett. 41(1), 119 (2012)

    Article  Google Scholar 

  65. M. Vij, H. K. Sonia, H. K. Verma, M. S. Jayalakshmy, B. Singh, S. Verma, and K. K. Maurya, Nonlinear optical single crystal of L-cystine hydrochloride: Insights into the crystalline perfection, thermal, mechanical and optical properties for device fabrication, Physica B 550, 250 (2018)

    Article  ADS  Google Scholar 

  66. S. Sonia, N. Vijayan, M. Vij, P. Kumar, B. Singh, S. Das, R. Rajnikant, and H. Soumya, Assessment of the imperative features of an L-arginine 4-nitrophenolate 4-nitrophenol dihydrate single crystal for nonlinear optical applications., Mater. Chem. Front. 1(6), 1107 (2017)

    Article  Google Scholar 

  67. V. Duraikkan, S. A. Bahadur, N. Nallamuthu, S. Athimoolam, and A. Manikandan, Investigation of phase transition in some ferroelectrics calcium and zinc doped diammonium dibromodichlorinate, J. Inorg. Organomet. Polym. 27(1), 363 (2017)

    Article  Google Scholar 

References for Part II

  1. N. M. Khusayfan, Ferroelectric properties of Ce doped hydroxyapatite nanoceramics, J. Alloys Compd. 685, 350 (2016)

    Article  Google Scholar 

  2. R. AL-Wafi, Ferroelectric properties of Sr doped hydroxyapatite bioceramics for biotechnological applications, J. Alloys Compd. 689, 169 (2016)

    Article  Google Scholar 

  3. A. A. Hendi, Hydroxyapatite based nanocomposite ceramics, J. Alloys Compd. 712, 147 (2017)

    Article  Google Scholar 

  4. R. V. K. Mangalam, P. Mandal, E. Suard, and A. Sundaresan, Ferroelectricity in ordered perovskite BaBi 5+0.2 (Bi 5+0.2 Nb 5+0.3 )O3with Bi3+:6s2 lone pair at the B-site, Chem. Mater. 19(17), 4114 (2007)

    Article  Google Scholar 

  5. A. M. Kusainova, P. Lightfoot, W. Zhou, S. Y. Stefanovich, A. V. Mosunov, and V. A. Dolgikh, Ferroelectric properties and crystal structure of the layered intergrowth phase Bi3Pb2Nb2O11Cl, Chem. Mater. 13(12), 4731 (2001)

    Article  Google Scholar 

  6. C. Jin, Ferroelectric behavior of nonlinear optical material MnTeMoO6, Optik (Stuttg.) 130, 1021 (2017)

    Article  ADS  Google Scholar 

  7. Z. Zhong, W. Ding, W. Hou, Y. Chen, X. Chen, Y. Zhu, and N. Min, Preparation, characterization, and ferroelectric properties of the alkylamine-intercalated layered perovskite-type oxides (CnH2n+1NH3-Sr2Nb3O10, n = 1−6), Chem. Mater. 13(2), 538 (2001)

    Article  Google Scholar 

  8. V. Isaza-Zapata, A. Arias, C. Maya, W. Martínez, A. Agudelo, B. Álvarez, A. Gómez, and J. L. Izquierdo, Ferroelectric response of Na0.9Li0.1NbO3 at room temperature, J. Phys. Conf. Ser. 850, 012009 (2017)

    Article  Google Scholar 

  9. O. Khamman, J. Jainumpone, A. Watcharapasorn, and S. Ananta, Fabrication, phase formation and microstructure of Ni4Nb2O9 ceramics fabricated by using the two-stage sintering technique, J. Korean Phys. Soc. 69(3), 365 (2016)

    Article  ADS  Google Scholar 

  10. R. N. P. Kumar, R. N. P. Choudhary, and B. P. Singh, Structural, dielectric and electrical properties of Te modified barium stannates using impedance analysis, J. Mater. Sci. 42(19), 8306 (2007)

    Article  ADS  Google Scholar 

  11. P. R. Das, R. N. P. Choudhary, and B. K. Samantray, Diffuse ferroelectric phase transition in Na2Pb2Sm2W2Ti4 Nb4O30 ceramics, Mater. Chem. Phys. 101(1), 228 (2007)

    Article  Google Scholar 

  12. P. R. Das, B. N. Parida, R. Padhee, and R. N. P. Choudhary, Structural and dielectric properties of Na2Pb2Nd2W2Ti4V4O30 ferroelectric ceramics, Indian J. Phys. 90(2), 155 (2016)

    Article  ADS  Google Scholar 

  13. X. M. Chen, Y. T. Lu, D. Z. Jin, and X. Q. Liu, Dielectric and ferroelectric characterization of Na(Ta, Nb)O3 solid solution ceramics, J. Electroceram. 15(1), 21 (2005)

    Article  Google Scholar 

  14. Y.-D. Hou, Y. Shi, H.-Y. Ge, M.-K. Zhu, and H. Yan, Comparative studies of ferroelectric behavior in rutile type FeTiTaO6 and AlTiTaO6, Mater. Res. Bull. 47(2), 184 (2012)

    Article  Google Scholar 

  15. L. Biswal, P. R. Das, B. Behera, and R. N. P. Choudhury, Structural, dielectric and conductivity studies of Na2Pb2La2W2Ti4Nb4O30 ferroelectric ceramic, J. Electroceram. 29(3), 204 (2012)

    Article  Google Scholar 

  16. X. Tian, S. Qu, Y. Zhou, B. Xu, and Z. Xu, Effects of Mn-addition on the microstructure and ferroelectric properties of high-temperature CaBi2Nb2O9 ceramics, J. Inorg. Organomet. Polym. 23(4), 877 (2013)

    Article  Google Scholar 

  17. S. J. Patwe, V. Katari, N. P. Salke, S. K. Deshpande, R. Rao, M. K. Gupta, R. Mittal, S. N. Achary, and A. K. Tyag, Structural and electrical properties of layered perovskite type Pr2Ti2O7: Experimental and theoretical investigations, J. Mater. Chem. C 3(17), 4570 (2015)

    Article  Google Scholar 

  18. X. L. Zhu, Y. Bai, X. Q. Liu, and X. M. Chen, Ferroelectric and dielectric properties in Ba5SmFe1.5Nb8.5O30 tungsten bronze ceramics, Adv. Appl. Ceramics 112(7), 412 (2013)

    Article  Google Scholar 

  19. Z. Lei, T. Chen, W. Li, M. Liu, W. Ge, and Y. Lu, Cobalt-substituted seven-layer aurivillius Bi8Fe4Ti3O24 ceramics: Enhanced ferromagnetism and ferroelectricity, Crystals (Basel) 7(3), 76 (2017)

    Article  Google Scholar 

  20. P. R. Das, L. Biswal, B. Behera, and R. N. P. Choudhary, Structural and electrical properties of Na2Pb2Eu2W2Ti4X4O30 (X = Nb, Ta) ferroelectric ceramics, Mater. Res. Bull. 44(6), 1214 (2009)

    Article  Google Scholar 

  21. O. Subohi, G. S. Kumar, M. M. Malik, and R. Kurchania, Synthesis of bismuth titanate with urea as fuel by solution combustion route and its dielectric and ferroelectric properties, Optik (Stuttg.) 125(2), 820 (2014)

    Article  ADS  Google Scholar 

  22. P. A. Jha, P. K. Jha, A. K. Jha, and R. K. Dwivedi, Dielectric behavior of (1−x)BaZr0. 025Ti0.9 75O3−(x)BiFeO3 solid solutions, Mater. Res. Bull. 48(1), 101 (2013)

    Article  Google Scholar 

  23. K. Nakagawa, H. Tokoro, and S. Ohkoshi, Observation of ferroelectricity in paramagnetic copper octacyanomolybdate, Inorg. Chem. 47(23), 10810 (2008)

    Article  Google Scholar 

  24. B. Kaur, K. Singh, O. P. Pandey, and S. Thakur, Influence of modifier on dielectric and ferroelectric properties of aluminosilicate glasses, J. Non-Cryst. Solids 465, 26 (2017)

    Article  ADS  Google Scholar 

  25. B. W. Li, M. Osada, T. C. Ozawa, and T. Sasaki, RbBiNb2O7: A new lead-free high-T c ferroelectric, Chem. Mater. 24(16), 3111 (2012)

    Article  Google Scholar 

  26. R. Muduli, P. Kumar, R. K. Panda, and S. Panigrahi, Dielectric, ferroelectric and impedance spectroscopic studies of Mn and W modified AgNbO3 ceramics, Mater. Chem. Phys. 180, 422 (2016)

    Article  Google Scholar 

  27. W. Zhang, N. Kumada, Y. Yonesaki, T. Takei, N. Kinomura, T. Hayashi, M. Azuma, and M. Takano, Ferroelectric perovskite-type barium copper niobate: BaCu1/3Nb2/3O3, J. Solid State Chem. 179(12), 4052 (2006)

    Article  ADS  Google Scholar 

  28. M. Pastor and K. Biswas, Synthesis and electrical characterization of Ba(Cd1/3Nb2/3)O3 ferroelectric compound, Mater. Chem. Phys. 139(2–3), 634 (2013)

    Article  Google Scholar 

  29. C. Hu, L. Fang, X. Peng, C. Li, B. Wu, and L. Liu, Dielectric and ferroelectric properties of tungsten bronze ferroelectrics in SrO-Pr2O3-TiO2-Nb2O5 system, Mater. Chem. Phys. 121(1–2), 114 (2010)

    Article  ADS  Google Scholar 

  30. N. V. Quyet, L. H. Bac, and D. D. Dung, Enhancement of the electrical-field-induced strain in lead-free Bi0. 5(Na,K)0.5TiO3-based piezoelectric ceramics: Role of the phase transition, J. Korean Phys. Soc. 66(8), 1317 (2015)

    Article  ADS  Google Scholar 

  31. X. Tian, S. Qu, Y. Zhou, B. Xu, and Z. Xu, Effects of Mn-addition on the microstructure and ferroelectric properties of high-temperature CaBi2Nb2O9 ceramics, J. Inorg. Organomet. Polym. 23(4), 877 (2013)

    Article  Google Scholar 

  32. S. K. Ramasesha, A. K. Singh, and K. B. R. Varma, Effect of pressure on dielectric and ferroelectric properties of bismuth vanadate, Mater. Chem. Phys. 48(2), 136 (1997)

    Article  Google Scholar 

  33. C. A. Diaz-Moreno, Y. Ding, J. Portelles, J. Heiras, A. H. Macias, A. Syeed, A. Paez, C. Li, J. López, and R. Wicker, Optical properties of ferroelectric lanthanum lithium niobite, Ceram. 44, 4727 (2018)

    Google Scholar 

  34. Q. Yin, Z. Sun, S. Shi, J. Yang, C. Tian, and M. Bao, Structure and electrical properties of lead-free piezoelectric ceramics Bi0. 5Na0.5TiO3Ba0.94Sr0.06(Sn0. 08Ti0.92)O3, Asian J. Chem. 26(6), 1698 (2014)

    Article  Google Scholar 

  35. S. Somwan, A. Ngamjarurojana, and A. Limpichaipanit, Dielectric, ferroelectric and induced strain behavior of PLZT 9/65/35 ceramics modified by Bi2O3 and CuO co-doping, Ceram. Int. 42(9), 10690 (2016)

    Article  Google Scholar 

  36. P. S. Sahoo, A. Panigrahi, S. K. Patri, and R. N. P. Choudhary, Structural, dielectric, electrical and piezoelectric properties of Ba4SrRTi3V7O30 (R = Sm, Dy) ceramics, Cent. Eur. J. Phys. 6, 843 (2008)

    Google Scholar 

  37. P. S. Sahoo and A. Panigrahi, Dielectric properties of Ba3Sr2DyTi3V7O30 ceramics, Cent. Eur. J. Phys. 8(4), 639 (2010)

    Google Scholar 

  38. S. K. Barik, R. N. P. Choudhary, and P. K. Mahapatra, Structural and dielectric studies oflead-free ceramics: Na1/2Y1/2TiO3, Cent. Eur. J. Phys. 6(4), 849 (2008)

    Google Scholar 

  39. B. Behera, P. Nayak, and R. N. P. Choudhary, Structural and electrical properties of KCa2Nb5O15 ceramics, Cent. Eur. J. Phys. 6, 289 (2008)

    Google Scholar 

  40. O. Subohi, G. S. Kumar, M. M. Malik, and R. Kurchania, Study of influence of fuel on dielectric and ferroelectric properties of bismuth titanate ceramics synthesized using solution based combustion technique, Mater. Res. Express 2(3), 036302 (2015)

    Article  ADS  Google Scholar 

  41. X. Tian, S. Qu, B. Wang, and Z. Xu, Microstructure and electrical properties of ultra high temperature (1−x)CaBi2Nb2O9−xNa0. 5Bi2.5Nb2O9 ceramics, Mater. Res. Innov. 19(3), 171 (2015)

    Article  Google Scholar 

  42. C. Huang, W. Wong-Ng, W. F. Liu, X. N. Zhang, Y. Jiang, P. Wu, B. Y. Tong, H. Zhao, and S. Y. Wang, Major improvement of ferroelectric and optical properties in Na-doped Ruddlesden-Popper layered hybrid improper ferroelectric compound, Ca3Ti2O7, J. Alloys Compd. 770, 582 (2019)

    Article  Google Scholar 

  43. N. Kumar, A. Shukla, N. Kumar, S. Sahoo, S. Hajra, and R. N. P. Choudhary, Structural, electrical and ferroelectric characteristics of Bi(Fe0.9La0.1)O3, Ceram. Int. 44(17), 21330 (2018)

    Article  Google Scholar 

  44. P. Gupta, P. K. Mahapatra, and R. N. P. Choudhary, Structural and electrical characteristics of an aurivillius family compound Bi2LaTiVO9, Cryst. Res. Technol. 53(12), 1800045 (2018)

    Article  Google Scholar 

  45. H. Wattanasarn, S. Sansupan, P. Srinuanlae, A. Namthaisong, S. Phewphong, W. Phontankham, T. Sumphao, J. Kongphimai, W. Chaiphaksa, and J. Kaewkhao, Effect of Fe2O3-dopped on ferroelectric properties of (55−x)SiO2:xFe2O3:1Al2O3:6.3CaO:0.2Sb2O3: 13B2O3:4.5BaO:20Na2O, Mater. Today 5, 13934 (2018)

    Google Scholar 

Multiferroics ceramics

  1. Y. Qiao, Y. Zhou, S. Wang, L. Yuan, Y. Du, D. Lu, G. Che, and H. Che, Composition dependent magnetic and ferroelectric properties of hydrothermally synthesized GdFe1−xCrxO3 (0.1 ≤ x ≤ 0.9) perovskites, Dalton Trans. 46(18), 5930 (2017)

    Article  Google Scholar 

  2. S. Madolappa, A. V. Anupama, P. W. Jaschin, K. B. R. Varma, and B. Sahoo, Magnetic and ferroelectric characteristics of Gd3+ and Ti4+ co-doped BiFeO3 ceramics, Bull. Mater. Sci. 39(2), 593 (2016)

    Article  Google Scholar 

  3. S. R. Mohapatra, B. Sahu, M. Chandrasekhar, P. Kumar, S. D. Kaushik, S. Rath, and A. K. Singh, Effect of cobalt substitution on structural, impedance, ferroelectric and magnetic properties of multiferroic Bi2Fe4O9 ceramics, Ceram. Int. 42(10), 12352 (2016)

    Article  Google Scholar 

  4. X. Wang, J. Yu, J. C. Zhang, X. Yan, C. Song, Y. Long, K. Ruan, and X. Li, Structural evolution, magnetization enhancement, and ferroelectric properties of Er3+- doped SmFeO3, Ceram. Int. 43(18), 16903 (2017)

    Article  Google Scholar 

  5. D. Varshney, P. Sharma, S. Satapathy, and P. K. Gupta, Structural, electrical and magnetic properties of Bi0 .825Pb0. 1 75FeO3, and Bi0 .725La0 .1Pb0 .175FeO3 multi-ferroics, Mater. Res. Bull. 49, 345 (2014)

    Article  Google Scholar 

  6. Y. Han, W. Mao, C. Quan, X. Wang, J. Yang, T. Yang, X. Li, and W. Huang, Enhancement of magnetic and ferroelectric properties of BiFeO3 by Er and transition element (Mn, Co) co-doping, Mater. Sci. Eng. B 188, 26 (2014)

    Article  Google Scholar 

  7. T. Kaur, J. Sharma, S. Kumar, and A. K. Srivastava, Optical and multiferroic properties of Gd-Co substituted barium hexaferrite, Cryst. Res. Technol. 52(9), 1700098 (2017)

    Article  Google Scholar 

  8. P. T. Lin, X. Li, L. Zhang, J. H. Yin, X. W. Cheng, Z. H. Wang, Y. C. Wu, and G. H. Wu, La-doped BiFeO3: Synthesis and multiferroic property study, Chin. Phys. B 23(4), 047701 (2014)

    Article  ADS  Google Scholar 

  9. B. Chatterjee, H. Kevin, G. D. Dwivedi, H. D. Yang, S. Chatterjee, and A. K. Ghosh, Enhancement of ferromagnetic and ferroelectric properties in Co-doped BiFeO3, Asian J. Chem. 23(12), 5563 (2011)

    Google Scholar 

  10. L. Yi, Coexistence of magnetic and ferroelectric properties in Y0. 1Co1 .9MnO4, Chin. Phys. B 19(7), 077201 (2010)

    Article  ADS  Google Scholar 

  11. N. Raju, S. S. Kumar Reddy, J. Ramesh, C. G. Reddy, P. Y. Reddy, K. R. Reddy, V. G. Sathe, and V. R. Reddy, Magnetic, ferroelectric, and spin phonon coupling studies of Sr3Co2Fe24O41 multiferroic Z-type hexaferrite, J. Appl. Phys. 120(5), 054103 (2016)

    Article  ADS  Google Scholar 

  12. Z. M. Tian, S. L. Yuan, X. L. Wang, X. F. Zheng, S. Y. Yin, C. H. Wang, and L. Liu, Size effect on magnetic and ferroelectric properties in Bi2Fe4O9 multiferroic ceramics, J. Appl. Phys. 106(10), 103912 (2009)

    Article  ADS  Google Scholar 

  13. Z. M. Tian, Y. Qiu, S. L. Yuan, M. S. Wu, S. X. Huo, and H. N. Duan, Enhanced multiferroic properties in Ti-doped Bi2Fe4O9 ceramics, J. Appl. Phys. 108(6), 064110 (2010)

    Article  ADS  Google Scholar 

  14. M. Naveed-Ul-Haq, V. V. Shvartsman, G. Constantinescu, H. Trivedi, S. Salamon, J. Landers, H. Wende, and D. C. Lupascu, Effect of Al3+ modification on cobalt ferrite and its impact on the magnetoelectric effect in BCZT-CFO multiferroic composites, J. Mater. Sci. 52(23), 13402 (2017)

    Article  Google Scholar 

  15. J. S. Kim, C. I. Cheon, W.-S. Oh, and P. W. Jang, Crystal structure and multiferroic properties of the BiFeO3-PrFeO3-DyFeO3-BaTiO3 system, phys. stat. sol. (b) 241(7), 1629 (2004)

    Article  ADS  Google Scholar 

  16. M. Muneeswaran, R. Dhanalakshmi, and N. V. Giridharan, Effect of Tb substitution on structural, optical, electrical and magnetic properties of BiFeO3, J. Mater. Sci. Mater. Electron. 26(6), 3827 (2015)

    Article  Google Scholar 

  17. Y. Qiu, Z. J. Zou, R. R. Sang, H. Wang, D. Xue, Z. M. Tian, G. S. Gong, and S. L. Yuan, Enhanced magnetic and ferroelectric properties in Cr doped Bi2Fe4O9 ceramics, J. Mater. Sci. Mater. Electron. 26(3), 1732 (2015)

    Article  Google Scholar 

  18. Y. Ma, Y. J. Wu, Y. Q. Lin, and X. M. Chen, Microstructures and multiferroic properties of YFe1−xMnxO3 ceramics prepared by spark plasma sintering, J. Mater. Sci. Mater. Electron. 21(8), 838 (2010)

    Article  Google Scholar 

  19. S. Samantaray and B. K. Roul, Dielectric and magnetic properties of DyMnO3 ceramics, J. Mater. Sci. Mater. Electron. 24(9), 3387 (2013)

    Article  Google Scholar 

  20. J. A. Moreira, A. Almeida, W. S. Ferreira, M. R. Chaves, J. B. Oliveira, J. M. Machado da Silva, M. A. Sá, S. M. F. Vilela, and P. B. Tavares, Ferroelectricity in antiferromagnetic phases of Eu1−xYxMnO3, Solid State Commun. 151(5), 368 (2011)

    Article  ADS  Google Scholar 

  21. S. Huang, L. R. Shi, Z. M. Tian, S. L. Yuan, C. M. Zhu, G. S. Gong, and Y. Qiu, Effect of Al3+ substitution on the structural, magnetic, and electric properties in multiferroic Bi2Fe4O9 ceramics, J. Solid State Chem. 227, 79 (2015)

    Article  ADS  Google Scholar 

  22. A. Mitra, A. S. Mahapatra, A. Mallick, A. Shaw, M. Ghosh, and P. K. Chakrabarti, Simultaneous enhancement of magnetic and ferroelectric properties of LaFeO3 by co-doping with Dy3+ and Ti4+, J. Alloys Compd. 726, 1195 (2017)

    Article  Google Scholar 

  23. P. P. Rout, S. K. Pradhan, S. K. Das, S. Samantaray, and B. K. Roul, Enhancement of magnetic and ferroelectric behaviour in (Ca, Co) co-doped HoMnO3 multiferroics, J. Magn. Magn. Mater. 345, 106 (2013)

    Article  ADS  Google Scholar 

  24. Y. Tian, F. Xue, Q. Fu, D. Zhou, Y. Hu, L. Zhou, Z. Zheng, and Z. Xin, Impedance spectroscopy and ferromagnetic properties of Bi0 .8Gd0 .2FeO3 multiferroics, J. Magn. Magn. Mater. 435, 154 (2017)

    Article  ADS  Google Scholar 

  25. B. K. Vashisth, J. S. Bangruwa, A. Beniwal, S. P. Gairola, A. Kumar, N. Singh, and V. Verma, Modified ferroelectric/magnetic and leakage current density properties of Co and Sm co-doped bismuth ferrites, J. Alloys Compd. 698, 699 (2017)

    Article  Google Scholar 

  26. S. K. Das, and B. K. Roul, Room temperature magnetism and ferroelectricity in BaTi0.95−xHf0.05CoxO3 ceramics, J. Magn. Magn. Mater. 363, 77 (2014)

    Article  ADS  Google Scholar 

  27. X. Yuan, L. Shi, J. Zhao, S. Zhou, Y. Li, C. Xie, and J. Sr Guo, Sr and Pb co-doping effect on the crystal structure, dielectric and magnetic properties of BiFeO3 multiferroic compounds, J. Alloys Compd. 708, 93 (2017)

    Article  Google Scholar 

  28. K. K. Bharathi, J. A. Chelvane, and G. Markandeyulu, Magnetoelectric properties of Gd and Nd-doped nickel ferrite, J. Magn. Magn. Mater. 321(22), 3677 (2009)

    Article  ADS  Google Scholar 

  29. R. N. Bhowmik and A. K. Sinh, Improvement of room temperature electric polarization and ferrimagnetic properties of Co1. 25Fe1. 7 5O4 ferrite by heat treatment, J. Magn. Magn. Mater. 421, 120 (2017)

    Article  ADS  Google Scholar 

  30. S. R. Wadgane, S. E. Shirsath, A. S. Gaikwad, S. Satpute, A. B. Kadam, and R. H. Kadam, Ferro- and magneto-electric characteristics in YFeO3-Y3Fe5O12 nanocomposites, J. Magn. Magn. Mater. 457, 103 (2017)

    Article  ADS  Google Scholar 

  31. J. Roa-Rojas, C. Salazar, D. Llamosa, A. A. León-Vanegas, D. A. L. Téllez, P. Pureur, F. T. Dias, and V. N. Vieira, Magnetoelectric response of new Sr2TiMnO6 manganite-like material, J. Magn. Magn. Mater. 320(14), e104 (2008)

    Article  Google Scholar 

  32. S. S. Yadava, A. Khare, P. Gautam, A. Kumar, and K. D. Mandal, Dielectric, ferroelectric and magnetic study of iron doped hexagonal Ba4YMn3−xO11.5−δ(BYMO) and its dependence on temperature as well as frequency, New J. Chem. 41(11), 4611 (2017)

    Article  Google Scholar 

  33. A. Rathi, H. Borkar, P. K. Rout, A. Gupta, H. K. Singh, A. Kumar, B. Gahtori, R. P. Pant, and G. A. Basheed, Antisite disorder-driven large electric polarization in multiferroic Nd2CoMnO6, J. Phys. D Appl. Phys. 50(46), 465001 (2017)

    Article  ADS  Google Scholar 

  34. M. G. Masud, A. Ghosh, J. Sannigrahi, and B. K. Chaudhuri, Observation of relaxor ferroelectricity and multiferroic behaviour in nanoparticles of the ferromagnetic semiconductor La2NiMnO6, J. Phys.: Condens. Matter 24(29), 295902 (2012)

    Google Scholar 

  35. Z. Wang, R. Gao, X. Deng, G. Chen, W. Cai, and C. Fu, Dielectric and ferroelectric properties of LaFeO3 particles derived from metal organic frameworks precursor, Ceram. Int. 45(2), 1825 (2019)

    Article  Google Scholar 

  36. A. Mitra, A. S. Mahapatra, A. Mallick, A. Shaw, N. Bhakta, and P. K. Chakrabarti, Improved magneto-electric properties of LaFeO3 in La0. 8Gd0. 2Fe0. 97Nb0. 03O3, Ceram. Int. 44(4), 4442 (2018)

    Article  Google Scholar 

  37. M. S. Alam, R. Hossain, and M. A. Basith, Enhanced multiferroism in Gd-doped BiMn2O5 ceramics, Ceram. Int. 44(2), 1594 (2018)

    Article  Google Scholar 

  38. K. Praveena, P. Bharathi, H. L. Liu, and K. B. R. Varma, Structural, multiferroic properties and enhanced magnetoelectric coupling in Sm1−xCaxFeO3, Ceram. Int. 42(12), 13572 (2016)

    Article  Google Scholar 

  39. S. R. Mohapatra, B. Sahu, M. Chandrasekhar, P. Kumar, S. D. Kaushik, S. Rath, and A. K. Singh, Effect of cobalt substitution on structural, impedance, ferroelectric and magnetic properties of multiferroic Bi2Fe4O9 ceramics, Ceram. Int. 42(10), 12352 (2016)

    Article  Google Scholar 

  40. A. Durán, J. M. Jiménez, M. Solórzano, and R. Falconi, Improvement of the ferroelectric properties of Ti-doped YCrO3ceramic, J. Phys. Chem. Solids 123, 228 (2018)

    Article  ADS  Google Scholar 

  41. R. Tursun, Y. C. Su, Q. S. Yu, J. Tan, T. Hu, Z. B. Luo, and J. Zhang, Effect of doping on the structural, magnetic, and ferroelectric properties of Ni1−xAxTiO3 (A = Mn, Fe, Co, Cu, Zn; x = 0, 0.05, and 0.1), J. Alloys Compd. 773, 288 (2019)

    Article  Google Scholar 

  42. K. L. Routray, D. Sanyal, and D. Behera, Gamma irradiation induced structural, electrical, magnetic and ferroelectric transformation in bismuth doped nanosized cobalt ferrite for various applications, Mater. Res. Bull. 110, 126 (2019)

    Article  Google Scholar 

  43. A. S. Mahapatra and P. K. Chakrabarti, Enhanced magnetic and ferroelectric properties of La0.9Tb0.1FeO3, Mater. Sci. Eng. 240, 140 (2019)

    Article  Google Scholar 

  44. P. P. Khirade, S. D. Birajdar, A. V. Raut, and K. M. Jadhav, Multiferroic iron doped BaTiO3 nanoceramics synthesized by sol-gel auto combustion: Influence of iron on physical properties, Ceram. Int. 42(10), 12441 (2016)

    Article  Google Scholar 

  45. M. Naveed-Ul-Haq, V. V. Shvartsman, G. Constantinescu, H. Trivedi, S. Salamon, J. Landers, H. Wende, and D. C. Lupascu, Effect of Al3+ modification on cobalt ferrite and its impact on the magnetoelectric effect in BCZT-CFO multiferroic composites, J. Mater. Sci. 52(23), 13402 (2017)

    Article  Google Scholar 

  46. R. Pattanayak, S. Kuila, S. Raut, S. P. Ghosh, S. Dhal, and S. Panigrahi, Observation of grain size effect on multiferroism and magnetoelectric coupling of Na0.5Bi0.5TiO3-BaFe12O19 novel composite system, J. Magn. Magn. Mater. 444, 401 (2017)

    Article  ADS  Google Scholar 

  47. R. Rani, J. K. Juneja, S. Singh, K. K. Raina, and C. Prakash, Study of 0.1Ni0.8Zn0.2Fe2O4-0.9Pb1−3x/2LaxZr0. 65Ti0. 35O3 magnetoelectric composites, J. Magn. Magn. Mater. 325, 47 (2013)

    Article  ADS  Google Scholar 

  48. S. Dipti, S. Singh, J. K. Juneja, K. K. Raina, R. K. Kotnala, and C. Prakash, Study of xCo0. 8Ni0. 2Fe2O4+(1−x) Pb0.99625La0.0025Zr0.55Ti0.45O3 magnetoelectric composites, J. Magn. Magn. Mater. 407, 279 (2016)

    Article  ADS  Google Scholar 

  49. J. H. Peng, M. Hojamberdiev, H. G. Li, D. L. Mao, Y. J. Zhao, P. Liu, J. P. Zhou, and G. Q. Zhu, Electrical, magnetic, and direct and converse magnetoelectric properties of (1−x)Pb(Zr0.52Ti0.48)O3 -(x)CoFe2O4 (PZT-CFO) magnetoelectric composites, J. Magn. Magn. Mater. 378, 298 (2015)

    Article  ADS  Google Scholar 

  50. S. Jangra, S. Sanghi, A. Agarwal, M. Rangi, K. Kaswan, and S. Khasa, iImproved structural, dielectric and magnetic properties of Ca2+ and Nb5+ co-substituted BiFeO3 multiferroics, J. Alloys Compd. 722, 606 (2017)

    Article  Google Scholar 

  51. A. S. Kumar, C. S. Chitra Lekha, S. Vivek, V. Saravanan, K. Nandakumar, and S. S. Nair, Multiferroic and magnetoelectric properties of Ba0.85Ca0.15Zr0.1Ti0.9O3-CoFe2O4 core-shell nanocomposite, J. Magn. Magn. Mater. 418, 294 (2016)

    Article  ADS  Google Scholar 

  52. N. S. Negi, A. Sharma, J. Shah, and R. K. Kotnala, Investigation on impedance response, magnetic and ferroelectric properties of 0.20(Co1−xZnxFe2−yMnyO4)-0.80(Pb0. 70Ca0. 30TiO3) magnetoelectric composites, Mater. Chem. Phys. 148(3), 1221 (2014)

    Article  Google Scholar 

  53. M. Kumar, S. Shankar, O. Parkash, and O. P. Thakur, Dielectric and multiferroic properties of 0.75BiFeO3-0.25BaTiO3 solid solution, J. Mater. Sci. Mater. Electron. 25(2), 888 (2014)

    Article  Google Scholar 

  54. T. Ramesh, V. Rajendar, and S. R. Murthy, CoFe2O4-BaTiO3 multiferroic composites: Role of ferrite and ferroelectric phases on the structural, magneto dielectric properties, J. Mater. Sci. Mater. Electron. 28(16), 11779 (2017)

    Article  Google Scholar 

  55. Y. Liu, Y. Wu, D. Li, Y. Zhang, J. Zhang, and J. Yang, A study of structural, ferroelectric, ferromagnetic, dielectric properties of NiFe2O4-BaTiO3 multiferroic composites, J. Mater. Sci. Mater. Electron. 24(6), 1900 (2013)

    Article  Google Scholar 

  56. Y. Liu, Y. Wu, D. Li, Y. Zhang, J. Zhang, and J. Yang, A study of structural, ferroelectric, ferromagnetic, dielectric properties of NiFe2O4-BaTiO3 multiferroic composites, J. Mater. Sci. Mater. Electron. 24(6), 1900 (2013)

    Article  Google Scholar 

  57. L. K. Pradhan, R. Pandey, R. Kumar, and M. Kar, Lattice strain induced multiferroicity in PZT-CFO particulate composite, J. Appl. Phys. 123(7), 074101 (2018)

    Article  ADS  Google Scholar 

  58. R. Sharma, P. Pahuja, and R. P. Tandon, Structural, dielectric, ferromagnetic, ferroelectric and ac conductivity studies of the BaTiO3-CoFe1 .8Zn0 .2O4 multiferroic particulate composites, Ceram. Int. 40(7), 9027 (2014)

    Article  Google Scholar 

  59. X. Qi, J. Zhou, Z. Yue, Z. Gui, L. Li, and S. Buddhudu, A ferroelectric ferromagnetic composite material with significant permeability and permittivity, Adv. Funct. Mater. 14(9), 920 (2004)

    Article  Google Scholar 

  60. A. S. Mahapatra, A. Mitra, A. Mallick, A. Shaw, and P. K. Chakrabarti, Structural, magnetic, dielectric and magneto-dielectric properties of (BaTiO3)0.70(Li0 .3Zn0 .4Fe2.3O4)0.30, Mater. Res. Bull. 102, 226 (2018)

    Article  Google Scholar 

  61. S. K. Mandal, S. Chakraborty, P. Dey, B. Saha, and T. K. Nath, Zn doped NiFe2O4-Pb (Zr0 .58Ti0 .42)O3 multiferroic nanocomposites: Magnetoelectric coupling, dielectric and electrical transport, J. Alloys Compd. 747, 834 (2018)

    Article  Google Scholar 

  62. R. G. Ganapathi, R. B. Lakshmi, K. C. Arun, K. K. N. Chidambara, K. Samatha, M. K. Sreeramachandra, and P. D. Madhava, Ferroelectric and dielectric properties of BaTi0. 9Zr0. 1O3 doped with LiasFe2.5O4 ceramics, Physica B 539, 44 (2018)

    Article  ADS  Google Scholar 

  63. J. S. Bangruwa, B. K. Vashisth, N. Singh, N. Singh, and V. Verma, A systematic study of structural, magnetic and electric properties of perovskite-spinel composites prepared by sol-gel technique, J. Alloys Compd. 739, 319 (2018)

    Article  Google Scholar 

  64. R. Pandey, L. K. Pradhan, and M. Kar, Structural, magnetic, and electrical properties of (1− x)Bi0. 85La0. 15FeO3-CoFe2O4 multiferroic composites, J. Phys. Chem. Solids 115, 42 (2018)

    Article  ADS  Google Scholar 

  65. H. Manaay, J. Anthoniappen, C. S. Tu, R. Sarmiento-Jr, C.-S. Chen, P.-Y. Chen, and F. M. Ruiz, Improved microstructure and ferroelectric properties in B-site Ti4+-substituted (Bi0 .86Sm0 .14)FeO3 polycrystalline ceramics, Mater. Chem. Phys. 225, 272 (2019)

    Article  Google Scholar 

  66. S. Shankar, M. Kumar, A. K. Ghosh, O. P. Thakur, and M. Jayasimhadri, Anomalous ferroelectricity and strong magnetoelectric coupling in CoFe2O4-ferroelectric composites, J. Alloys Compd. 779, 918 (2019)

    Article  Google Scholar 

  67. A. Ghani, S. Yang, S. S. Rajput, S. Ahmed, A. Murtaza, C. Zhou, Y. Zhang, X. Song, and X. Ren, Enhanced multiferroic properties of lead-free (1−x)GaFeO3−xCo0. 5Zn0. 5Fe2O4 composities, J. Appl. Phys. 124(15), 154101 (2018)

    Article  ADS  Google Scholar 

  68. R. Rani, J. K. Juneja, S. Singh, K. K. Raina, and C. Prakash, Dielectric, ferroelectric, magnetic and magnetoelectric properties of 0.1Ni0 .8Zn0 .2Fe2O4-0.9Pb1−3x/2SmxZr0. 65Ti0. 35O3 magnetoelectric composites, Ceram. Int. 39(7), 7845 (2013)

    Article  Google Scholar 

  69. H. F. Zhang, S. W. Or, and H. L. W. Chan, Dielectric and magnetic properties of fine grained ferromagnetic-ferroelectric composites, Mater. Res. Innov. 12(3), 142 (2008)

    Article  Google Scholar 

  70. H. Y. Dai, Z. P. Chen, T. Li, C. M. Wang, Y. Li, and Y. S. Guo, Influence of samarium substitution on structural and multiferroic properties of bismuth ferrite ceramics, Mater. Res. Innov. 17(2), 62 (2013)

    Article  Google Scholar 

  71. R. Xu, S. Hang, F. Wang, Q. Zhang, Z. Li, Z. Wang, R. Gao, W. Cai, and C. Fu, The study of microstructure, dielectric and multiferroic properties of (1−x)Co0. 8Cu0. 2Fe2O4-(x)Ba0. 6Sr0. 4TiO3 composites, J. Electron. Mater. 48(1), 386 (2019)

    Article  ADS  Google Scholar 

  72. V. N. Shut, V. M. Laletin, S. R. Syrtsov, V. L. Trublovsky, Yu. V. Medvedeva, K. I. Yanushkevich, M. V. Bushinskii, and T. V. Petlitskaya, Structure, ferroelectric, and magnetoelectric properties of bulk PZT-NiFe1. 9Co0. 02O4−δ composites, Phys. Solid State 60(9), 1744 (2018)

    Article  ADS  Google Scholar 

  73. A. S. Dzunuzovic, M. M. Vijatovic Petrovic, J. D. Bobic, N. I. Ilic, M. Ivanov, R. Grigalaitis, J. Banys, and B. D. Stojanovic, Magneto-electric properties of xNi0. 7Zn0. 3Fe2O4-(1− x)BaTiO3 multiferroic composites, Ceram. Int. 44(1), 683 (2018)

    Article  Google Scholar 

  74. M. K. Sharif, M. A. Khan, M. F. Warsi, M. Ramzan, and A. Hussain, Structural and ferroelectric properties of hafnium substituted BiFeO3 multiferroics synthesized via auto combustion technique, Ceram. Int. 44(17), 20648 (2018)

    Article  Google Scholar 

  75. X. Wang, Z. Wang, Q. Hu, C. Zhang, D. Wang, and L. Li, Room temperature multiferroic properties of Fedoped nonstoichiometric SrTiO3 ceramics at both A and B sites, Solid State Commun. 289, 22 (2019)

    Article  ADS  Google Scholar 

  76. S. Atiq, M. Faizan, A. H. Khan, A. Mahmood, S. M. Ramay, and S. Naseem, Co-existence of magnetic and electric ferroic orders in La-substituted BiFeO3, Results Phys. 12, 1269 (2019)

    Article  ADS  Google Scholar 

  77. D. Ginting, S. C. Yu, T. L. Phan, N. V. Dang, T. D. Thanh, and V. D. Lam, Electron-spin-resonance spectra and ferroelectricity of BaTi1−xFexO3, J. Korean Phys. Soc. 62(12), 2128 (2013)

    Article  ADS  Google Scholar 

  78. A. Kumar, K. L. Yadav, S. Kumar, N. Kumar, A. Mishra, N. Kumar, U. Shankar, T. Mehrotra, G. Sharma, R. Kumar, and G. D. Adhikary, Magnetic, ferroelectric, and magnetodielectric properties of BiFeO3 ceramic co-doped with Eu and Gd, J. Phys. Chem. Solids 124, 19 (2019)

    Article  ADS  Google Scholar 

  79. L. G. Wang, W. J. Kong, X. X. Wang, J. X. Lei, and Y. Y. Liang, Room-temperature multiferroic properties of Ba2+ doped 0.7Bi0.5Na0.5TiO3-0.3NiFe2O4 ceramics, Ceram. Int. 45(1), 1135 (2019)

    Article  Google Scholar 

  80. F. N. Sayed, B. P. Mandal, O. D. Jayakumar, A. Arya, R. M. Kadam, A. Dixit, R. Naik, and A. K. Tyagi, Rare examples of fluoride-based multiferroic materials in Mnsubstituted BaMgF4 systems: Experimental and theoretical studies, Inorg. Chem. 50(22), 11765 (2011)

    Article  Google Scholar 

  81. A. Stroppa, P. Jain, P. Barone, M. Marsman, J. M. Perez-Mato, A. K. Cheetham, H. W. Kroto, and S. Picozzi, Electric control of magnetization and interplay between orbital ordering and ferroelectricity in a multiferroic metal-organic framework, Angew. Chem. Int. Ed. 50(26), 5847 (2011)

    Article  Google Scholar 

  82. J. R. Sahu, A. Ghosh, A. Sundaresan, and C. N. R. Rao, Multiferroic properties of ErMnO3, Mater. Res. Bull. 44(11), 2123 (2009)

    Article  Google Scholar 

  83. L. J. Wang, S. M. Feng, J. L. Zhu, R. C. Yu, C. Q. Jin, W. Yu, X. H. Wang, and L. T. Li, Ferroelectricity of multiferroic hexagonal TmMnO3 ceramics synthesized under high pressure, Appl. Phys. Lett. 91(17), 172502 (2007)

    Article  ADS  Google Scholar 

  84. J. H. Choi, J. S. Kim, and C. I. Cheon, Effect of process condition on the ferroelectric properties in BiFeO3-(Bi,K)TiO3 ceramics, J. Korean Phys. Soc. 65(3), 382 (2014)

    Article  ADS  Google Scholar 

  85. W. Yansen, K. J. Parwanta, D. Hadiyawarman, D. Kim, Y. Gwan, J. Kim, C. Liu, C. U. Jung, and B. W. Lee, Effects of bismuth donor doping on the phase structure and the magnetic and ferroelectric properties of Fedoped BaTiO3, J. Korean Phys. Soc. 63(3), 306 (2013)

    Article  ADS  Google Scholar 

  86. P. Jarupoom and P. Jaita, Enhanced magnetic performance of lead-free (Bi0.5Na0.5)TiO3-CoFe2O4 magneto-electric ceramics, Electron. Mater. Lett. 11(5), 788 (2015)

    Article  ADS  Google Scholar 

  87. T. Amjad, I. Sadiq, A. B. Javaid, S. Riaz, S. Naseem, and M. Nadeem, Investigation of structural, electrical, electrical polarization and dielectric properties of CTAB assisted Ni2+ substituted R-type nano-hexaferrites, J. Alloys Compd. 770, 1112 (2019)

    Article  Google Scholar 

  88. C. W. Baek, N. K. Oh, G. Han, W. H. Yoon, J. W. Kim, J. J. Choi, B. D. Han, D. S. Park, K. D. Sung, J. H. Jung, D. Y. Jeong, J. J. Kim, and J. Ryu, Effect of Ba(Cu1/3Nb2/3)O3 content on multiferroic properties in BiFeO3 ceramics, Mater. Sci. Eng. 177(6), 451 (2012)

    Article  Google Scholar 

  89. Z. M. Tian, Y. S. Zhang, S. L. Yuan, M. S. Wu, C. H. Wang, Z. Z. Ma, S. X. Huo, and H. N. Duan, Enhanced multiferroic properties and tunable magnetic behavior in multiferroic BiFeO3-Bi0.5Na0.5TiO3 solid solutions, Mater. Sci. Eng. 177(1), 74 (2012)

    Article  Google Scholar 

  90. C. S. Devi, M. B. Suresh, G. S. Kumar, and G. Prasad, Microstructural and high temperature dielectric, ferroelectric and complex impedance spectroscopic properties of BiFeO3 modified NBT-BT lead free ferroelectric ceramics, Mater. Sci. Eng. 228, 38 (2018)

    Article  Google Scholar 

  91. J. Singh, A. Agarwal, S. Sanghi, T. Bhasin, M. Yadav, U. Bhakar, and O. Singh, Effect of Ba and Ho co-doping on crystal structure, phase transformation, magnetic properties and dielectric properties of BiFeO3, Curr. Appl. Phys. 19(3), 321 (2019)

    Article  ADS  Google Scholar 

  92. J. S. Hwang, Y. J. Yoo, Y. P. Lee, J. H. Kang, K. H. Lee, B. W. Lee, and S. Y. Park, Reinforced magnetic properties of Ni-doped BiFeO3 ceramic, J. Korean Phys. Soc. 69(3), 282 (2016)

    Article  ADS  Google Scholar 

  93. D. L. Golić, A. Radojković, J. Ćirković, A. Dapčević, D. Pajić, N. Tasić, S. M. Savić, M. Počuča-Nešić, S. Marković, G. Branković, Z. M. Stanojević, and Z. Branković, Structural, ferroelectric and magnetic properties of BiFeO3 synthesized by sonochemically assisted hydrothermal and hydro-evaporation chemical methods, J. Eur. Ceram. Soc. 36(7), 1623 (2016)

    Article  Google Scholar 

  94. H. Paik, H.-C. Kim, K. No, Y.-I. Kim, D. P. Cann, and J. Hong, Structural and physical properties of room temperature stable multiferroic properties of single-phase (Bi0.9La0.1)FeO3-Pb(Fe0.5Nb0.5)O3 solid solution systems, J. Appl. Phys. 105, 07D919 (2009)

    Article  Google Scholar 

  95. A. Kumar, P. Sharma, and D. Varshney, Structural and ferroic properties of La, Nd, and Dy doped BiFeO3 ceramics, J. Ceram. 2015, 869071 (2015)

    Google Scholar 

  96. A. Kumar, P. Sharma, W. Yang, J. Shen, D. Varshney, and Q. Li, Effect of La and Ni substitution on structure, dielectric and ferroelectric properties of BiFeO3 ceramics, Ceram. Int. 42(13), 14805 (2016)

    Article  Google Scholar 

  97. R. D. Liu, L. H. He, L. Q. Yan, Z. C. Wang, Y. Sun, Y. T. Liu, D. F. Chen, S. Zhang, Y. G. Zhao, and F. W. Wang, Al-doping-induced magnetocapacitance in the multiferroic AgCrS2, Chin. Phys. B 24(12), 127507 (2015)

    Article  ADS  Google Scholar 

  98. A. Gautam and V. S. Rangra, Effect of Ba ions substitution on multiferroic properties of BiFeO3 perovskite, Cryst. Res. Technol. 45(9), 953 (2010)

    Article  Google Scholar 

  99. A. Beniwal, J. S. Bangruwa, B. Vasisth, S. P. Gairola, and V. Verma, Modification in structural, electrical and magnetic properties of Pr doped bismuth ferrites, Inter. J. Engn. Res. Technol. 5(03), 56 (2016)

    Google Scholar 

  100. Y. Ma and X. M. Chen, Enhanced multiferroic characteristics in NaNbO3-modified BiFeO3 ceramics, J. Appl. Phys. 105(5), 054107 (2009)

    Article  ADS  Google Scholar 

  101. Z. Z. Ma, Z. M. Tian, J. Q. Li, C. H. Wang, S. X. Huo, H. N. Duan, and S. L. Yuan, Enhanced polarization and magnetization in multiferroic (1−x)BiFeO3−xSrTiO3 solid solution, Solid State Sci. 13(12), 2196 (2011)

    Article  ADS  Google Scholar 

  102. A. K. Pradhan, K. Zhang, D. Hunter, J. B. Dadson, G. B. Loiutts, P. Bhattacharya, R. Katiyar, J. Zhang, D. J. Sellmyer, U. N. Roy, Y. Cui, and A. Burger, Magnetic and electrical properties of single-phase multiferroic BiFeO3, J. Appl. Phys. 97(9), 093903 (2005)

    Article  ADS  Google Scholar 

  103. J. Wu, S. Mao, Z. G. Ye, Z. Xie, and L. Zheng, Room-temperature ferromagnetic/ferroelectric BiFeO3 synthesized by a self-catalyzed fast reaction process, J. Mater. Chem. 20(31), 6512 (2010)

    Article  Google Scholar 

  104. M. M. Kumar, V. R. Palkar, K. Srinivas, and S. V. Suryanarayana, Ferroelectricity in a pure BiFeO3 ceramic, Appl. Phys. Lett. 76(19), 2764 (2000)

    Article  ADS  Google Scholar 

  105. Y. P. Wang, L. Zhou, M. F. Zhang, X. Y. Chen, J. M. Liu, and Z. G. Liu, Room-temperature saturated ferroelectric polarization in BiFeO3 ceramics synthesized by rapid liquid phas, sintering, Appl. Phys. Lett. 84(10), 1731 (2004)

    Article  ADS  Google Scholar 

  106. P. N. Francis, S. Dhanuskodi, M. S. Jayalakshmy, M. Muneeswaran, J. Philip, and N. V. Giridharan, Optical limiting and magnetoelectric coupling in multiferroic BiFeO3 nanoparticles, Mater. Chem. Phys. 216, 93 (2018)

    Article  Google Scholar 

  107. J. Xu, D. Xie, C. Yin, T. Feng, X. Zhang, G. Li, H. Zhao, Y. Zhao, S. Ma, T. L. Ren, Y. Guan, X. Gao, and Y. Zhao, Enhanced dielectric and multiferroic properties of single-phase Y and Zr co-doped BiFeO3 ceramics, J. Appl. Phys. 114(15), 154103 (2013)

    Article  ADS  Google Scholar 

  108. S. Zhang, W. Luo, L. Wang, D. Wang, and Y. Ma, Simultaneously improved magnetization and polarization in BiFeO3 based multiferroic composites, J. Appl. Phys. 107(5), 054110 (2010)

    Article  ADS  Google Scholar 

  109. S. Chandel, P. Thakur, S. S. Thakur, A. Sharma, J. H. Hsu, M. Tomar, V. Gupta, and A. Thakur, Investigation of excess and deficiency of iron in BiFeO3, Mater. Chem. Phys. 204, 207 (2018)

    Article  Google Scholar 

  110. Y. Li, J. Yu, J. Li, C. Zheng, Y. Wu, Y. Zhao, M. Wang, and Y. Wang, Influence of Dy-doping on ferroelectric and dielectric properties in Bi1.05−xDyxFeO3 ceramics, J. Mater. Sci. Mater. Electron. 22(4), 323 (2011)

    Article  Google Scholar 

  111. J. Xu, G. Ye, M. Zeng, Y. Deng, X. Chang, J. Sun, and Q. Wang, Enhanced multiferroic properties of Nd and Co co-doped BiFeO3 ceramics, J. Mater. Sci. Mater. Electron. 26(9), 6907 (2015)

    Article  Google Scholar 

  112. Q. Yao, X. Xu, S. Peng, Y. Zhu, Z. Wang, Y. Ma, X. Wang, W. Mao, and X. Li, Structural, optical and multiferroic properties of Eu, Ba co-doped BiFeO3, J. Mater. Sci. Mater. Electron. 28(1), 463 (2017)

    Article  Google Scholar 

  113. A. S. Prima, I. B. Shameem Banu, and Z. Mohammed, Effect of novel (Gd, Cu) substitution on the electrical properties and magnetoelectric coupling of bismuth ferrite ceramics, J. Mater. Sci. Mater. Electron. 28(12), 8467 (2017)

    Article  Google Scholar 

  114. M. Kumar, S. Shankar, O. P. Thakur, and A. K. Ghosh, Studies on magnetoelectric coupling and magnetic properties of (1−x)BiFeO3−xBaTiO3 solid solutions, J. Mater. Sci. Mater. Electron. 26(3), 1427 (2015)

    Article  Google Scholar 

  115. M. Banerjee, A. Mukherjee, A. Banerjee, D. Das, and S. Basu, Enhancement of multiferroic properties and unusual magnetic phase transition in Eu doped bismuth ferrite nanoparticles, New J. Chem. 41(19), 10985 (2017)

    Article  Google Scholar 

  116. S. K. Satpathy, S. Sen, and B. Behera, Dielectric, electrical and magnetic properties of La doped BiFeO3-PbZrO3 composites, J. Mater. Sci. Mater. Electron. 28(12), 9102 (2017)

    Article  Google Scholar 

  117. R. R. Raut, P. H. Salame, J. T. Kolte, C. S. Ulhe, and P. Goplan, Giant dielectric response and magnetoelectric behavior of 95BiFeO3-5BaTiO3 (95BFO-5BT) ceramics, J. Mater. Sci. Mater. Electron. 27(1), 730 (2016)

    Article  Google Scholar 

  118. K. Sen, K. Singh, A. Gautam, and M. Singh, Dispersion studies of La substitution on dielectric and ferroelectric properties of multiferroic BiFeO3 ceramic, Ceram. Int. 38(1), 243 (2012)

    Article  Google Scholar 

  119. D. S. García-Zaleta, A. M. Torres-Huerta, M. A. Domínguez-Crespo, J. A. Matutes-Aquino, A. M. González, and M. E. Villafuerte-Castrejón, Solid solutions of La-doped BiFeO3 obtained by the Pechini method with improvement in their properties, Ceram. Int. 40(7), 9225 (2014)

    Article  Google Scholar 

  120. H. Y. Dai, J. Chen, T. Li, D. W. Liu, R. Z. Xue, H. W. Xiang, and Z. P. Chen, Effect of BaTiO3 doping on the structural, electrical and magnetic properties of BiFeO3 ceramics, J. Mater. Sci. Mater. Electron. 26(6), 3717 (2015)

    Article  Google Scholar 

  121. I. B. Shameem Banu and S. D. Lakshmi, Simultaneous enhancement of room temperature multiferroic properties of BiFeO3 by Nd doping at Bi site and Co doping at Fe site, J. Mater. Sci. Mater. Electron. 28(21), 16044 (2017)

    Article  Google Scholar 

  122. W. Zheng, L. Zhang, Y. Lin, Z. Shi, F. Cao, G. Yuan, and J. Yu, Ferroic phase transitions and switching properties of modified BiFeO3-SrTiO3 multiferroic perovskites, J. Mater. Sci. Mater. Electron. 27(11), 12067 (2016)

    Article  Google Scholar 

  123. T. Murtaza, J. Ali, M. S. Khan, and K. Asokan, Structural, electrical and magnetic properties of multiferroic BiFeO3-SrTiO3 composites, J. Mater. Sci. Mater. Electron. 29(3), 2110 (2018)

    Article  Google Scholar 

  124. M. Sahni, N. Kumar, M. Kumar, and S. Singh, Effect of Sr substitution on structural, dielectric, magnetic and magnetoelectric properties of rapid liquid sintered BiFe0 .8Ti0 .2O3 ceramics, J. Mater. Sci. Mater. Electron. 25(11), 4743 (2014)

    Article  Google Scholar 

  125. R. Gupta, S. Verma, V. Singh, and K. K. Bamzai, Preparation, structural, electrical, and ferroelectric properties of lead niobate-lead zirconate-lead titanate ternary system, J. Ceram. 2015, 835150 (2015)

    Google Scholar 

  126. H. Y. Dai, L. T. Gu, X. Y. Xie, T. Li, Z. P. Chen, and Z. J. Li, The structure, defects, electrical and magnetic properties of BiFe1−xZrxO3 multiferroic ceramics, J. Mater. Sci. Mater. Electron. 29(3), 2275 (2018)

    Article  Google Scholar 

  127. B. Dhanalakshmi, K. Pratap, B. P. Rao, and P. S. V. Subba Rao, Effects of Mn doping on structural, dielectric and multiferroic properties of BiFeO3 nanoceramics, J. Alloys Compd. 676, 193 (2016)

    Article  Google Scholar 

  128. R. Mazumder and A. Sen, Effect of Pb-doping on dielectric properties of BiFeO3 ceramics, J. Alloys Compd. 475(1–2), 577 (2009)

    Article  Google Scholar 

  129. G. L. Song, Y. C. Song, J. Su, X. H. Song, N. Zhang, T. X. Wang, and F. G. Chang, Crystal structure refinement, ferroelectric and ferromagnetic properties of Ho3+ modified BiFeO3 multiferroic material, J. Alloys Compd. 696, 503 (2017)

    Article  Google Scholar 

  130. P. Saxena, A. Kumar, P. Sharma, and D. Varshney, Improved dielectric and ferroelectric properties of dualsite substituted rhombohedral structured BiFeO3 multi-ferroics, J. Alloys Compd. 682, 418 (2016)

    Article  Google Scholar 

  131. H. Deng, M. Zhang, Z. Hu, Q. Xie, Q. Zhong, J. Wei, and H. Yan, Enhanced dielectric and ferroelectric properties of Ba and Ti co-doped BiFeO3 multiferroic ceramics, J. Alloys Compd. 582, 273 (2014)

    Article  Google Scholar 

  132. K. S. Kumar, P. Aswini, and C. Venkateswaran, Effect of Tb-Mn substitution on the magnetic and electrical properties of BiFeO3 ceramics, J. Magn. Magn. Mater. 364, 60 (2014)

    Article  ADS  Google Scholar 

  133. P. Sharma and V. Verma, Structural, magnetic and electrical properties of La and Mn co-substituted BFO samples prepared by the sol-gel technique, J. Magn. Magn. Mater. 374, 18 (2015)

    Article  ADS  Google Scholar 

  134. W. S. Kim, Y. K. Jun, K. H. Kim, and S. H. Hong, Enhanced magnetization in Co and Ta-substituted BiFeO3 ceramics, J. Magn. Magn. Mater. 321(19), 3262 (2009)

    Article  ADS  Google Scholar 

  135. A. Anju, A. Agarwal, P. Aghamkar, and B. Lal, Structural and multiferroic properties of barium substituted bismuth ferrite nanocrystallites prepared by sol-gel method, J. Magn. Magn. Mater. 426, 800 (2017)

    Article  ADS  Google Scholar 

  136. Y. A. Chaudhari, A. Singh, C. M. Mahajan, P. P. Jagtap, E. M. Abuassaj, R. Chatterjee, and S. T. Bendre, Multiferroic properties in Zn and Ni co-doped BiFeO3 ceramics by solution combustion method (SCM), J. Magn. Magn. Mater. 347, 153 (2013)

    Article  ADS  Google Scholar 

  137. M. Manikandan, K. S. Kumar, N. Aparnadevi, N. P. Shanker, and C. Venkateswaran, Multiferroicity in polar phase LiNbO3 at room temperature, J. Magn. Magn. Mater. 391, 156 (2015)

    Article  ADS  Google Scholar 

  138. Y. Chaudhari, C. M. Mahajan, A. Singh, P. Jagtap, R. Chatterjee, and S. Bendre, Multiferroic properties of nanocrystalline BiFe1−xNixO3 (x = 0.0−0.15) perovskite ceramics, J. Magn. Magn. Mater. 395, 329 (2015)

    Article  ADS  Google Scholar 

  139. M. M. El-Desoky, M. S. Ayoua, M. M. Mostafa, and M. A. Ahmed, Multiferroic properties of nanostructured barium doped bismuth ferrite, J. Magn. Magn. Mater. 404, 68 (2016)

    Article  ADS  Google Scholar 

  140. A. S. Priya, I. B. S. Banu, and S. Anwar, Influence of Dy and Cu doping on the room temperature multiferroic properties of BiFeO3, J. Magn. Magn. Mater. 401, 333 (2016)

    Article  ADS  Google Scholar 

  141. S. T. Dadami, S. Matteppanavar, I. Shivaraja, S. Rayaprol, B. Angadi, and B. Sahoo, Investigation on structural, Mössbauer and ferroelectric properties of (1−x)PbFe0 .5Nb0 .5O3-(x)BiFeO3 solid solution, J. Magn. Magn. Mater. 418, 122 (2016)

    Article  ADS  Google Scholar 

  142. A. G. Lone and R. N. Bhowmik, Study of room temperature ferromagnetic and ferroelectric properties in α-Fe1 .6Ga0 .4O3 alloy, J. Magn. Magn. Mater. 379, 244 (2015)

    Article  ADS  Google Scholar 

  143. V. Verma, A. Beniwal, A. Ohlan, and R. Tripathi, Structural, magnetic and ferroelectric properties of Pr doped multi-ferroics bismuth ferrites, J. Magn. Magn. Mater. 394, 385 (2015)

    Article  ADS  Google Scholar 

  144. J. Pal, S. Kumar, L. Singh, M. Singh, and A. Singh, Detailed investigation on structural, dielectric, magnetic and magnetodielectric properties of BiFeO3-BaSrTiO3 solid solutions, J. Magn. Magn. Mater. 441, 339 (2017)

    Article  ADS  Google Scholar 

  145. M. Banerjee, A. Mukherjee, A. Banerjee, D. Das, and S. Basu, Enhancement of multiferroic properties and unusual magnetic phase transition in Eu doped bismuth ferrite nanoparticles, New J. Chem. 41(19), 10985 (2017)

    Article  Google Scholar 

  146. S. S. Yadava, A. Khare, P. Gautam, A. Kumar, and K. D. Mandal, Dielectric, ferroelectric and magnetic study of iron doped hexagonal Ba4YMn3O11.5−δ (BYMO) and its dependence on temperature as well as frequency, New J. Chem. 41(11), 4611 (2017)

    Article  Google Scholar 

  147. H. Dai, F. Ye, Z. Chen, T. Li, and D. Liu, The effect of ion doping at different sites on the structure, defects and multiferroic properties of BiFeO3 ceramics, J. Alloys Compd. 734, 60 (2018)

    Article  Google Scholar 

  148. A. Anwar, M. A. Basith, and S. Choudhury, From bulk to nano: A comparative investigation of structural, ferroelectric and magnetic properties of Sm and Ti co-doped BiFeO3 multiferroics, Mater. Res. Bull. 111, 93 (2019)

    Article  Google Scholar 

  149. S. R. Wadgane, S. T. Alone, A. Karim, G. Vats, S. E. Shirsath, and R. H. Kadam, Magnetic field induced polarization and magnetoelectric effect in Na0 .5Bi0 .5TiO3-Co0 .75Zn0 .25Cr0 .2Fe1 .8O4 multiferroic composite, J. Magn. Magn. Mater. 471, 388 (2019)

    Article  ADS  Google Scholar 

  150. X. Peng, Y. Pu, Y. Guo, Z. J. Dong, Y. Shi, and L. Zhang, Effect of Y2O3 dopant on dielectric, magnetic, magnetodielectric properties of Bi0.95La0.0 5Fe0.9 5Ti0.0 5O3 ceramics, J. Alloys Compd. 773, 970 (2019)

    Article  Google Scholar 

  151. M. Nadeem, W. Khan, S. Khan, S. Husain, and A. Ansari, Tailoring dielectric properties and multiferroic behavior of nanocrystalline BiFeO3 via Ni doping, J. Appl. Phys. 124(16), 164105 (2018)

    Article  ADS  Google Scholar 

  152. H. Zhao, H. Wang, Z. Cheng, Q. Fu, H. Tao, Z. Ma, T. Jia, H. Kimura, and H. Li, Electric and magnetic properties of Aurivillius-phase compounds: Bi5Ti3XO15 (X = Cu, Mn, Ni, V), Ceram. Int. 44(11), 13226 (2018)

    Article  Google Scholar 

  153. A. Amouri, N. Abdelmoula, and H. Khemakhem, Improved multiferroic properties in (1−x)BiFeO3-(x)BaTi0 .95(Yb0 .5Nb0 .5)0.05O3 system (0 ≤ x ≤ 0.3), J. Magn. Magn. Mater. 417, 302 (2016)

    Article  ADS  Google Scholar 

  154. A. K. Yadav, P. Rajput, O. Alshammari, M. Khan, Anita, G. Kumar, S. Kumar, P. M. Shirage, S. Biring, and S. Sen, Structural distortion, ferroelectricity and ferromagnetism in Pb(Tii−xFex)O3, J. Alloys Compd. 701, 619 (2017)

    Article  Google Scholar 

  155. S. Sahoo, P. K. Mahapatra, R. N. P. Choudhary, and P. Alagarsamy, Influence of compositional variation on structural, electrical and magnetic characteristics of (Ba1−xGd)(Ti1−xFex)O3 (0.2 ≤ x ≤ 0.5), Mater. Res. Express 5(1), 016101 (2018)

    Article  ADS  Google Scholar 

  156. G. H. Jaffari, M. Aftab, A. Samad, F. Mumtaz, M. S. Awan, and S. I. Shah, Effects of dopant induced defects on structural, multiferroic and optical properties of Bi1 xPbxFeO3 (0 ≤ x ≤ 0.3) ceramics, Mater. Res. Express 5(1), 016103 (2018)

    Article  ADS  Google Scholar 

  157. A. Anwar, M. A. Basith, and S. Choudhury, From bulk to nano: A comparative investigation of structural, ferroelectric and magnetic properties of Sm and Ti co-doped BiFeO3 multiferroics, Mater. Res. Bull. 111, 93 (2019)

    Article  Google Scholar 

  158. P. Uniyal and K. L. Yadav, Study of dielectric, magnetic and ferroelectric properties in Bi1 xGdxFeO3, Mater. Lett. 62(17–18), 2858 (2008)

    Article  Google Scholar 

  159. S. Sharma, A. Mishra, P. Saravanan, O. P. Pandey, and P. Sharma, Effect of Gd-substitution on the ferroelectric and magnetic properties of BiFeO3 processed by high-energy ball milling, J. Magn. Magn. Mater. 418, 188 (2016)

    Article  ADS  Google Scholar 

  160. C. Zhang, M. Shang, M. Liu, L. Ge, H. Yuan, and S. Feng, Multiferroicity in SmFeO3 synthesized by hydrothermal method, J. Alloys Compd. 665, 152 (2016)

    Article  Google Scholar 

  161. R. Muduli, R. Pattanayak, S. Raut, P. Sahu, V. Senthil, S. Rath, P. Kumar, S. Panigrahi, and R. K. Panda, Dielectric, ferroelectric and impedance spectroscopic studies in TiO2-doped AgNbO3 ceramic, J. Alloys Compd. 664, 715 (2016)

    Article  Google Scholar 

  162. M. Manikandan, A. Muthukumaran, and C. Venkateswaran, Intrinsic magneto-dielectric effect in the diluted magnetic ferroelectric fluoride BaMg1 xMnxF4 (0 ≤ x ≤ 0.07), J. Magn. Magn. Mater. 393, 40 (2015)

    Article  ADS  Google Scholar 

  163. C. X. Chen, Y. K. Liu, and R. K. Zheng, Magnetic and ferroelectric properties of SmBi4Fe0.5Co0.5Ti3O15 compounds prepared with different synthesis methods, J. Mater. Sci. Mater. Electron. 28(11), 7562 (2017)

    Article  Google Scholar 

  164. J. D. Bobić, R. M. Katiliute, M. Ivanom, M. M. V. Petrović, N. I. Ilić, A. S. Džunuzović, J. Banys, and B. D. Stojanović, Dielectric, ferroelectric and magnetic properties of La doped Bi5Ti3FeO15 ceramics, J. Mater. Sci. Mater. Electron. 27(3), 2448 (2016)

    Article  Google Scholar 

  165. S. Liu, S. Yan, H. Luo, L. Yao, Z. Hu, S. Huang, and L. Deng, Enhanced magnetoelectric coupling in La-modified Bi5Co0.5Fe0.5Ti3O15 multiferroic ceramics, J. Mater. Sci. 53(2), 1014 (2018)

    Article  ADS  Google Scholar 

  166. S. Das, R. C. Sahoo, K. P. Bera, and T. K. Nath, Doping effect on ferromagnetism, ferroelectricity and dielectric constant in sol-gel derived Bi1−xNdxFe1−yCoyO3 nanoceramics, J. Magn. Magn. Mater. 451, 226 (2018)

    Article  ADS  Google Scholar 

  167. H. Paik, H. Hwang, K. No, S. Kwon, and D. P. Cann, Room temperature multiferroic properties of single-phase (Bi0.9La0.1)FeO3-Ba(Fe0.5Nb0.5)O3 solid solution ceramics, Appl. Phys. Lett. 90(4), 042908 (2007)

    Article  ADS  Google Scholar 

  168. X. Jia, J. Zhang, and J. Wang, Dielectric, ferroelectric and ferromagnetic properties of multiferroic (1−x)Ba0.99Ca0.01Zr0.02Ti0.98O3−xBiFeO3 ceramics, Ferroelctrics Lett. 44(4–6), 113 (2017)

    Article  Google Scholar 

  169. M. A. Jalaja and S. Dutta, Switchable photovoltaic properties of multiferroic KBiFe2O5, Mater. Res. Bull. 88, 9 (2017)

    Article  Google Scholar 

  170. S. Mohanty, A. Kumar, and R. N. P. Choudhary, Sudies of structural, dielectric, electrical and ferroelectric characteristics of BiFeO3 and (Bi0.5K0.5)(Fe0.5Ta0.5)O3, J. Mater. Sci. Mater. Electron. 26(12), 9640 (2015)

    Article  Google Scholar 

  171. M. M. Sutar, S. R. Jigajeni, A. N. Tarale, S. B. Kulkarni, and P. B. Joshi, Magnetoelectric and magnetodielectric effect in BST-LSMO ferromagnetic/ferroelectric composites, J. Mater. Sci. Mater. Electron. 25(9), 3771 (2014)

    Article  Google Scholar 

  172. W. Cai, C. Fu, G. Chen, R. Gao, and X. Deng, Dielectric and ferroelectric properties of xBaZr0.52Ti0.48O3-(1−x)BiFeO3 solid solution ceramics, J. Mater. Sci. Mater. Electron. 26(1), 322 (2015)

    Article  Google Scholar 

  173. K. Praveena and K. B. R. Varma, Ferroelectric and optical properties of Ba5Li2Ti2Nb8O30 ceramics potential for memory applications, J. Mater. Sci. Mater. Electron. 25(7), 3103 (2014)

    Article  Google Scholar 

  174. R. Castańeda, G. Rojas-George, J. Silva, M. E. Fuentes-Montero, J. A. Matutes-Aquino, A. Reyes-Rojas, and L. Fuentes, Effects of Ni doping on ferroelectric and ferromagnetic properties of Bi0. 7 5Ba0. 25FeO3, Ceram. Int. 39(7), 8527 (2013)

    Article  Google Scholar 

  175. K. L. Manjusha and K. L. Yadav, Enhanced dielectric, ferroelectric and magnetodielectric properties in three phase 0.45Bi0.9La0.1 FeO3-0.55Co0.5Ni0.5Fe2O4-BaTiO3 composite, J. Mater. Sci. Mater. Electron. 27(6), 6347 (2016)

    Article  Google Scholar 

  176. Y. Guo, P. Xiao, L. Luo, N. Jiang, F. Lei, Q. Zheng, and D. Lin, Structure, ferroelectric and piezoelectric properties of Bi0. 5(Na0. 8K0. 2)0. 5TiO3 modified BiFeO3-BaTiO3 lead-free piezoelectric ceramics, J. Mater. Sci. Mater. Electron. 25(9), 3753 (2014)

    Article  Google Scholar 

  177. S. Dash, R. Padhee, P. R. Das, and R. N. P. Choudhary, Enhancement of dielectric and electrical properties of NaNbO3-modified BiFeO3, J. Mater. Sci. Mater. Electron. 24(9), 3315 (2013)

    Article  Google Scholar 

  178. S. Godara and B. Kumar, Effect of Ba-Nb co-doping on the structural, dielectric, magnetic and ferroelectric properties of BiFeO3 Nanoparticles, Ceram. Int. 41(5), 6912 (2015)

    Article  Google Scholar 

  179. T. Ramesh, V. Rajendar, and S. R. Murthy, CoFe2O4-BaTiO3 multiferroic composites: Role of ferrite and ferroelectric phases on the structural, magneto dielectric properties, J. Mater. Sci. Mater. Electron. 28(16), 11779 (2017)

    Article  Google Scholar 

  180. S. Ahmed and S. K. Barik, Preparation of novel (Sb1/2Na1/2)(Fe2/3W1/3)O3 compound by solid state reaction technique and their multiferroic property, J. Mater. Sci. Mater. Electron. 27(10), 10294 (2016)

    Article  Google Scholar 

  181. V. Anbarasu, M. Dhilip, K. Saravana Kumar, and K. Sivakumar, Effect of trivalent transition metal ion substitution in multifunctional properties of Dy2 O3 system, J. Mater. Sci. Mater. Electron. 28(12), 8976 (2017)

    Article  Google Scholar 

  182. S. Nath, S. K. Barik, and R. N. P. Choudhary, Dielectric relaxation and magnetic characteristics of (La1/2Li1/2)(Fe1/2V1/2)O3 multiferroics, J. Mater. Sci. Mater. Electron. 26(10), 8199 (2015)

    Article  Google Scholar 

  183. S. Nath, S. K. Barik, and R. N. P. Choudhary, Electrical and ferroelectric characteristics of (LaLi)1/2(Fe2/3Mo1/3)O3, J. Mater. Sci. Mater. Electron. 27(8), 8717 (2016)

    Article  Google Scholar 

  184. B. Want, M. D. Rather, and R. Samad, Dielectric, ferroelectric and magnetic behavior of BaTiO3-BaFei2O19 composite, J. Mater. Sci. Mater. Electron. 27(6), 5860 (2016)

    Article  Google Scholar 

  185. M. Wang, and G. Tan, Multiferroic properties of Pb2Fe2O5 ceramics, Mater. Res. Bull. 46(3), 438 (2011)

    Article  Google Scholar 

  186. V. G. Kostishyn, L. V. Panina, L. V. Kozitov, A. V. Timofeev, A. K. Zyuzin, and A. N. Kovalev, Synthesis of Hexagonal BaFe1 2O19 and SrFe1 2O19 Ferrite Ceramics with Multiferroic Properties, Inorg. Mater.: Appl. Res. 6(5), 461 (2015)

    Article  Google Scholar 

  187. V. G. Kostishyn, L. V. Panina, A. V. Timofeev, L. V. Kozhitov, A. N. Kovalev, and A. K. Zyuzin, Dual ferroic properties of hexagonal ferrite ceramics BaFe1 2O19 and SrFe1 2O19, J. Magn. Magn. Mater. 400, 327 (2016)

    Article  ADS  Google Scholar 

  188. Z. Guo, L. Pan, C. Bi, H. Qiu, X. Zhao, L. Yang, and M. Y. Rafique, Structural and multiferroic properties of Fe-doped Ba0. 5Sr0. 5TiO3 solids, J. Magn. Magn. Mater. 325, 24 (2013)

    Article  ADS  Google Scholar 

  189. O. Subohi, C. R. Bowen, M. M. Malik, and R. Kurchania, Dielectric spectroscopy and ferroelectric properties of magnesium modified bismuth titanate ceramics, J. Alloys Compd. 688, 27 (2016)

    Article  Google Scholar 

  190. P. Gupta, R. Padhee, P. K. Mahapatra, R. N. P. Choudhary, and S. Das, Structural and electrical properties of B1 3TiVO9 ferroelectric ceramics, J. Alloys Compd. 731, 1171 (2018)

    Article  Google Scholar 

  191. A. Lavado and M. G. Stachiotti, Fe3+/Nb5+ co-doping effects on the properties of Aurivillius Bi4Ti3O12 ceramics, J. Alloys Compd. 731, 914 (2018)

    Article  Google Scholar 

  192. W. Cai, C. Fu, W. Hu, G. Chen, and X. Deng, Effects of microwave sintering power on microstructure, dielectric, ferroelectric and magnetic properties of bismuth ferrite ceramics, J. Alloys Compd. 554, 64 (2013)

    Article  Google Scholar 

  193. T. Ahmad and I. H. Lone, Citrate precursor synthesis and multifunctional properties of YCrO3 nanoparticles, New J. Chem. 40(4), 3216 (2016)

    Article  Google Scholar 

  194. K. Praveena and K. B. R. Varma, Enhanced electric field tunable magnetic properties of lead-free Na0. 5Bi0. 5TiO3-MnFe2O4 multiferroic composites, J. Mater. Sci. Mater. Electron. 25(12), 5403 (2014)

    Article  Google Scholar 

  195. V. Anbarasu, A. Manigandan, T. Karthik, and K. Sivakumar, Inducing multiferroic behaviour in the diamagnetic Y2O3 system, J. Mater. Sci. Mater. Electron. 23(6), 1201 (2012)

    Article  Google Scholar 

  196. S. K. Pradhan, S. N. Das, S. Bhuyan, C. Behera, and R. N. P. Choudhary, Structural and electrical properties of lead reduced lanthanum modified BiFeO3-PbTiO3 solid solution, J. Mater. Sci. Mater. Electron. 28(2), 1186 (2017)

    Article  Google Scholar 

  197. K. Mukhopadhyay, A. S. Mahapatra, and P. K. Chakrabarti, Multiferroic behavior, enhanced magnetization and exchange bias effect of Zn substituted nanocrystalline LaFeO3 (La1− xZnxFeO3, x = 0.10 and 0.30), J. Magn. Magn. Mater. 329, 133 (2013)

    Article  ADS  Google Scholar 

  198. R. Das and K. Mandal, Magnetic, ferroelectric and magnetoelectric properties of Ba-doped BiFeO3, J. Magn. Magn. Mater. 324(11), 1913 (2012)

    Article  ADS  Google Scholar 

  199. A. Jain, A. K. Panwar, and A. K. Jha, Significant enhancement in structural, dielectric, piezoelectric and ferromagnetic properties of Ba0 .9Sr0. 1Zr0. 1Ti0. 9O3-CoFe2O4 multiferroic composites, Mater. Res. Bull. 100, 367 (2018)

    Article  Google Scholar 

  200. S. Jindal, S. Devi, K. M. Batoo, G. Kumar, and A. Vasishth, Impact of copper substitution on the structural, ferroelectric and magnetic properties of tungsten bronze ceramics, Physica B 537, 87 (2018)

    Article  ADS  Google Scholar 

  201. P. Tirupathi and A. Chandra, Observation of bi-relaxor characteristic in multiferroic 0.70Bi0. 90Cao.ioFeO3-0.30PbTiO3 ceramics, J. Phys. D Appl. Phys. 46(37), 375304 (2013)

    Article  Google Scholar 

  202. L. H. Yin, W. H. Song, X. L. Jiao, W. B. Wu, X. B. Zhu, Z. R. Yang, J. M. Dai, R. L. Zhang, and Y. P. Sun, Multiferroic and magnetoelectric properties of Bi1−xBaxFe1−xMnxO3 system, J. Phys. D Appl. Phys. 42(20), 205402 (2009)

    Article  ADS  Google Scholar 

  203. G. H. Jaffari, M. Aftab, A. Samad, F. Mumtaz, M. S. Awan, and S. I. Shah, Effects of dopant induced defects on structural, multiferroic and optical properties of Bi1−xPbxFeO3 (0 ≤ x ≤ 0.3) ceramics, Matter. Res. Expr. 5(1), 016103 (2018)

    Article  ADS  Google Scholar 

  204. X. Q. Chen, F. J. Yang, W. Q. Cao, D. Y. Wang, and K. Chen, Room-temperature magnetoelectric coupling in Bi4(Ti1Fe2)O1 2−δ system, J. Phys. D Appl. Phys. 43(6), 065001 (2010)

    Article  ADS  Google Scholar 

  205. X. Chen, C. Wei, J. Xiao, Y. Xue, X. Zeng, F. Yang, P. Li, and Y. He, Room temperature multiferroic properties and magnetocapacitance effect of modified ferroelectric Bi4Ti3O1 2 ceramic, J. Phys. D Appl. Phys. 46(42), 425001 (2013)

    Article  ADS  Google Scholar 

  206. S. K. Patri and R. N. P. Choudhary, Phase transition in Bi8Fe6Ti3O27 multiferroic ceramics, Cent. Eur. J. Phys. 6, 450 (2008)

    Google Scholar 

  207. S. Sahoo, P. K. Mahapatra, R. N. P. Choudhary, and P. Alagarsamy, Influence of compositional variation on structural, electrical and magnetic characteristics of (Ba1−xGd)(Ti1−xFex)O3 (0.2 ≤ x ≤ 0.5), Matter. Res. Expr. 5(1), 016101 (2018)

    Article  ADS  Google Scholar 

  208. N. Kumar, A. Shukla, and R. N. P. Choudhary, Structural, dielectric, electrical and magnetic characteristics of lead-free multiferroic: Bi(Cd0. 5Ti0. 5)O3-BiFeO3 solid solution, J. Alloys Compd. 747, 895 (2018)

    Article  Google Scholar 

  209. R. Samantaray, R. J. Clark, E. S. Choi, H. Zhou, and N. S. Dalal, M3−x(NH4)xCrO8 (M = Na, K, Rb, Cs): A new family of Cr5+ based magnetic ferroelectrics, J. Am. Chem. Soc. 133(11), 3792 (2011)

    Article  Google Scholar 

  210. R. Samantaray, R. J. Clark, E. S. Choi, and N. S. Dalal, Elucidating the mechanism of multiferroicity in (NH4)3 Cr(O2)4 and its tailoring by alkali metal substitution, J. Am. Chem. Soc. 134(38), 15953 (2012)

    Article  Google Scholar 

  211. S. J. Kim, S. H. Han, H. G. Kim, A. Y. Kim, J. J. Kim, and C. J. Cohen, Multiferroic properties of Ti-doped BiFeO3 ceramics, J. Korean Phys. Soc. 56(1(2)), 439 (2010)

    Article  Google Scholar 

  212. N. H. Kim, E. J. Yoon, C. I. Cheon, and J. S. Kim, Multiferroic properties of a bismuth layer structured Bi3. 25La0. 75Ti3O12-(La0. 7Sr0. 3)MnO3 solid solution at low temperatures, J. Korean Phys. Soc. 56(1(2)), 393 (2010)

    Article  Google Scholar 

  213. S. Liu, S. Yan, H. Luo, L. Yao, Z. Hu, S. Huang, and L. Deng, Enhanced magnetoelectric coupling in La-modified Bi5Co0.5Fe0.5Ti3O15 multiferroic ceramics, J. Mater. Sci. 53(2), 1014 (2018)

    Article  ADS  Google Scholar 

  214. Y. J. Wu, S. P. Gu, Y. Q. Lin, Z. J. Hong, X. Q. Liu, and X. M. Chen, Multiferroic ceramics in BaO-Y2O3-Fe2O3-Nb2O5 system, Ceram. Int. 36(8), 2415 (2010)

    Article  Google Scholar 

  215. Y. Ma, X. M. Chen, Y. J. Wu, and Y. Q. Lin, Dielectric relaxation and enhanced multiferroic properties in YMn0.8Fe0.2O3 ceramics prepared by in situ spark plasma sintering, Ceram. Int. 36(2), 727 (2010)

    Article  Google Scholar 

  216. T. Karthik, A. Srinivas, V. Kamaraj, and V. Chandrasekeran, Influence of in-situ magnetic field pressing on the structural and multiferroic behaviour of BiFeO3 ceramics, Ceram. Int. 38(2), 1093 (2012)

    Article  Google Scholar 

  217. K. Sen, K. Singh, A. Gautam, and M. Singh, Dispersion studies of La substitution on dielectric and ferroelectric properties of multiferroic BiFeO3 ceramic, Ceram. Int. 38(1), 243 (2012)

    Article  Google Scholar 

  218. A. Prasatkhetragarn, P. Muangkonkad, P. Aommongkol, P. Jantaratana, N. Vittayakorn, and R. Yimnirun, Investigation on ferromagnetic and ferroelectric properties of (La, K)-doped BiFeO3-BaTiO3 solid solution, Ceram. Int. 39, S249 (2013)

    Article  Google Scholar 

  219. H. Dai, Z. Chen, R. Xue, T. Li, J. Chen, and H. Xiang, Structural and electric properties of polycrystalline Bi1−xErxFeO3 ceramics, Ceram. Int. 39(5), 5373 (2013)

    Article  Google Scholar 

  220. V. Kumar, A. Gaur, N. Sharma, J. Shah, and R. K. Kotnala, High temperature dielectric and magnetic response of Ti and Pr doped BiFeO3 ceramics, Ceram. Int. 39(7), 8113 (2013)

    Article  Google Scholar 

  221. H. Dai, R. Xue, Z. Chen, T. Li, J. Chen, and H. Xiang, Effect of Eu, Ti co-doping on the structural and multiferroic properties of BiFeO3 ceramics, Ceram. Int. 40(10), 15617 (2014)

    Article  Google Scholar 

  222. H. Bouzidi, H. Chaker, M. Essouni, C. Chaker, and H. Khemakhem, Structural, Raman, ferroelectric and magnetic studies of the (1−x)BF-xBCT multiferroic system, J. Alloys Compd. 772, 877 (2019)

    Article  Google Scholar 

  223. X. Chen, J. Xiao, J. Yao, Z. Kang, F. Yang, and X. Zeng, Room temperature magnetoelectric coupling study in multiferroic Bi4NdTi3Fe0. 7Ni0. 3O15 prepared by a multicalcination procedure, Ceram. Int. 40(5), 6815 (2014)

    Article  Google Scholar 

  224. J. Wei, M. Zhang, H. Deng, S. Chu, M. Du, and H. Yan, Effect of Cr doping on ferroelectric and magnetic properties of Bi0.8Ba0.2FeO3, Ceram. Int. 41(7), 8665 (2015)

    Article  Google Scholar 

  225. G. Zerihun, S. Huang, G. Gong, and S. Yuan, Influence of Eu doping on the magnetoelectric and dielectric properties of BiFeO3-Bi0.5Na0.5TiO3 ceramics, Ceram. Int. 41(5), 6589 (2015)

    Article  Google Scholar 

  226. J. Wei, Y. Liu, X. Bai, C. Li, Y. Liu, Z. Xu, P. Gemeiner, R. Haumont, I. C. Infante, and B. Dkhil, Crystal structure, leakage conduction mechanism evolution and enhanced multiferroic properties in Y-doped BiFeO3 ceramics, Ceram. Int. 42(12), 13395 (2016)

    Article  Google Scholar 

  227. M. Wu, W. Wang, X. Jiao, G. Wei, L. He, S. Han, Y. Liu, and D. Chen, Structural and multiferroic properties of Pr and Ti co-doped BiFeO3 ceramics, Ceram. Int. 42(13), 14675 (2016)

    Article  Google Scholar 

  228. A. Beniwal, J. S. Bangruwa, R. Walia, and V. Verma, A systematic study on multiferroics Bi1−xCexFe1−yMnyO3: Structural, magnetic and electrical properties, Ceram. Int. 42(8), 10373 (2016)

    Article  Google Scholar 

  229. W. Mao, W. Chen, X. Wang, Y. Zhu, Y. Ma, H. Xue, L. Chu, J. Yang, X. Li, and W. Huang, Influence of Eu and Sr co-substitution on multiferroic properties of BiFeO3, Ceram. Int. 42(11), 12838 (2016)

    Article  Google Scholar 

  230. S. Ahmed and S. Kumar Barik, Enhanced electric and magnetic properties of (BiLi)1/2(Fe2/3W1/3)O3 multiferroic as compared to BiFeO3, Ceram. Int. 42(5), 5659 (2016)

    Article  Google Scholar 

  231. A. S. Mahapatra, K. Mukhopadhyay, M. Ghosh, P. K. Mallick, T. Matsumoto, A. Taguchi, Y. Tanioku, K. Yoshimura, and P. K. Chakrabarti, Enhanced magneto-electric property and Raman spectroscopy of nanocrystalline AlxGa1−xFeO3 (x = 0.05, 0.10 and 0.20), Ceram. Int. 42(14), 15904 (2016)

    Article  Google Scholar 

  232. Y. Gu, J. Zhao, W. Zhang, H. Zheng, L. Liu, and W. Chen, Structural transformation and multiferroic properties of Sm and Ti co-doped BiFeO3 ceramics with Fe vacancies, Ceram. Int. 43(17), 14666 (2017)

    Article  Google Scholar 

  233. P. Xiong, J. Yang, Y. F. Qin, W. J. Huang, X. W. Tang, L. H. Yin, W. H. Song, J. M. Dai, X. B. Zhu, and Y. P. Sun, Room temperature multiferroicity in Aurivillius compounds Bi6Fe2−xNixTi3O18 (0 ≤ x ≤ 1), Ceram. Int. 43(5), 4405 (2017)

    Article  Google Scholar 

  234. T. Wang, H. Deng, X. Meng, H. Cao, W. Zhou, P. Shen, Y. Zhang, P. Yang, and J. Chu, Tunable polarization and magnetization at room-temperature in narrow bandgap Aurivillius Bi6Fe2−xCox /2Nix /2Ti3O18, Ceram. Int. 43(12), 8792 (2017)

    Article  Google Scholar 

  235. X. Zuo, M. Zhang, E. He, P. Zhang, J. Yang, X. Zhu, and J. Dai, Magnetic, dielectric, and magneto-dielectric properties of Aurivillius Bi7Fe2CrTi3O21 ceramic, Ceram. Int. 44(5), 5319 (2018)

    Article  Google Scholar 

  236. J. D. Bobic, M. Ivanov, N. I. Ilic, A. S. Dzunuzovic, M. M. V. Petrovic, J. Banys, A. Ribic, Z. Despotovic, and B. D. Stojanovic, PZT-nickel ferrite and PZT-cobalt ferrite comparative study: Structural, dielectric, ferroelectric and magnetic properties of composite ceramics, Ceram. Int. 44(6), 6551 (2018)

    Article  Google Scholar 

  237. S. Chandel, P. Thakur, S. S. Thakur, V. Kanwar, M. Tomar, V. Gupta, and A. Thakur, Effect of non-magnetic Al3+ doping on structural, optical, electrical, dielectric and magnetic properties of BiFeO3 ceramics, Ceram. Int. 44(5), 4711 (2018)

    Article  Google Scholar 

  238. N. Kumar, A. Shukla, N. Kumar, R. N. P. Choudhary, and A. Kumar, Structural, electrical, and multiferroic characteristics of lead-free multiferroic: Bi(Co0. 5Ti0. 5)O3-BiFeO3 solid solution, RSC Advances 8(64), 36939 (2018)

    Article  Google Scholar 

  239. W. Hu, Y. Chen, H. Yuan, G. Li, Y. Qiao, Y. Qin, and S. Feng, Structure, magnetic, and ferroelectric properties of Bi1−xGdxFeO3 nanoparticles, J. Phys. Chem. C 115(18), 8869 (2011)

    Article  Google Scholar 

  240. A. Chaudhuri and K. Mandal, Study of structural, ferromagnetic and ferroelectric properties of nanostructured barium doped bismuth ferrite, J. Magn. Magn. Mater. 353, 57 (2014)

    Article  ADS  Google Scholar 

  241. S. V. Vijayasundaram, G. Suresh, R. A. Mondal, and R. Kanagadurai, Substitution-driven enhanced magnetic and ferroelectric properties of BiFeO3 nanoparticles, J. Alloys Compd. 658, 726 (2016)

    Article  Google Scholar 

  242. W. Mao, Q. Yao, Y. Fan, Y. Wang, X. Wang, Y. Pu, and X. Li, Combined experimental and theoretical investigation on modulation of multiferroic properties in BiFeO3 ceramics induced by Dy and transition metals co-doping, J. Alloys Compd. 784, 117 (2019)

    Article  Google Scholar 

  243. H. Bai, J. Li, Y. Wu, Y. Hong, K. Shi, Q. Meng, Z. Zhou, D. Jia, R. Guo, and A. S. Bhalla, Structural, dielectric, ferroelectric, and ferromagnetic properties of multiferroic ceramics (1−x)Ba(Zr0. 2Ti0. 8)O3−x Ba0. 7Ca0. 3FeTaO5, Ferroelectrics 534(1), 164 (2018)

    Article  Google Scholar 

  244. S. Dash, R. N. P. Choudhary, and M. N. Goswami, Modification of ferroelectric and resistive properties of (Bi0.5Na0.5)(Nb0.5Fe0.5)O3-PVDF composite, J. Polym. Res. 22(4), 54 (2015)

    Article  Google Scholar 

  245. U. Naresh, R. J. Kumar, and K. C. B. Naidu, Optical, magnetic and ferroelectric properties of Ba0. 2Cu0. 8−xLaxFe2O4 (x = 0.2–0.6) nanoparticles, Ceram. Int. 45(6), 7515 (2019)

    Article  Google Scholar 

  246. M. Muneeswaran, S. H. Lee, D. H. Kim, B. S. Jung, S. H. Chang, J. W. Jang, B. C. Choi, J. H. Jeong, N. V. Giridharan, and C. Venkateswaran, Structural, vibrational, and enhanced magneto-electric coupling in Ho-substituted BiFeO3, J. Alloys Compd. 750, 276 (2018)

    Article  Google Scholar 

  247. F. Xue, Y. Tian, L. Tang, P. Guo, Z. Luo, and W. Li, Rietveld refinement and multiferroic properties of Gd and Ti co-doped BiFeO3, Ferroelectr. Lett. Sect. 45(1–3), 30 (2018)

    Article  Google Scholar 

  248. X. Yuan, L. Shi, J. Zhao, S. Zhou, J. Guo, S. Pan, X. Miao, L. Wu, Tuning ferroelectric, dielectric, and magnetic properties of BiFeO3 Ceramics by Ca and Pb Co-doping, phys. stat. sol. (b) 256(3), 1800499 (2019)

    Article  ADS  Google Scholar 

  249. M. Hemeda, A. Tawfik, D. E. El Refaey, A. H. ElSayed, and S. Mohamed, Electric and magnetic properties of [(NCZF)1−x(Na(ac.ac))x] nanocomposite, J. Miner. Mater. Charact. Eng. 7, 559 (2017)

    Google Scholar 

  250. T. Kanai, S. Ohkoshi, A. Nakajima, T. Watanabe, and K. Hashimoto, A ferroelectric ferromagnet composed of (PLZT)x(BiFeO3)1−x solid solution, Adv. Mater. 13(7), 487 (2001)

    Article  Google Scholar 

  251. J. Li, X. K. Lan, X. Q. Song, W. Z. Lu, X. H. Wang, F. Shi, and W. Lei, Crystal structures, dielectric properties and ferroelectricity in stuffed tridymite-type BaAl2−2x(Zn0. 5Si0. 5)2xO4 solid solutions, Dalton Trans. 48(11), 3625 (2019)

    Article  Google Scholar 

  252. V. Singh, S. Sharma, R. K. Dwivedi, M. Kumar, R. K. Kotnala, N. C. Mehra, and R. P. Tandon, Structural, dielectric, ferroelectric and magnetic properties of Bi0.80A0.20FeO3 (A = Pr, Y) multiferroics, J. Supercond. Nov. Magn. 26(3), 657 (2013)

    Article  Google Scholar 

  253. M. Kumar, K. L. Yadav, and G. D. Varma, Large magnetization and weak polarization in sol-gel derived BiFeO3 ceramics, Mater. Lett. 62(8–9), 1159 (2008)

    Article  Google Scholar 

  254. M. Kumar and K. L. Yadav, Study of room temperature magnetoelectric coupling in Ti substitutedbismuth ferrite system, J. Appl. Phys. 100(7), 074111 (2006)

    Article  ADS  Google Scholar 

  255. T. Acharyaa and R. N. P. Choudhary, Inducing ferroelectricity and magneto-electric effect in the iron titanate ilmenite by modifying with bismuth and lead titanate, J. Alloys Compd. 788, 495 (2019)

    Article  Google Scholar 

  256. Z. Li, W. Qi, J. Cao, Y. Li, G. Viola, C. Jia, and H. Yan, Multiferroic properties of single phase Bi3NbTiO9 based textured ceramics, J. Alloys Comp. 788, 701 (2019)

    Article  Google Scholar 

  257. L. Zia, G. H. Jaffari, N. A. Awan, J. U. Rahman, and S. Lee, Electrical response of mixed phase (1−x)BiFeO3−xPbTiO3 solid solution: Role of tetragonal phase and tetragonality, J. Alloys Compd. 786, 98 (2019)

    Article  Google Scholar 

  258. W. Maoa, Q. Yaob, Y. Fanb, Y. Wangb, X. Wanga, Y. Pua, and X. Li, Combined experimental and theoretical investigation on modulation of multiferroic properties in BiFeO3 ceramics induced by Dy and transition metals co-doping, J. Alloys Compd. 784, 117 (2019)

    Article  Google Scholar 

References for Part III

  1. T. Okubo, R. Kawajiri, T. Mitani, T. Shimoda, A mixed-valence coordination polymer featuring two-dimensional ferroelectric order: [Cu I4 CuII(Et2dtc = diethyldithiocarbamate), J. Am. Chem. Soc. 127(50), 17598 (2005)

    Article  Google Scholar 

  2. S. Ohkoshi, H. Tokoro, T. Matsuda, H. Takahashi, H. Irie, and K. Hashimoto, Coexistence of ferroelectricity and ferromagnetism in a rubidium manganese hexacyanoferrate, Angew. Chem. Int. Ed. 46(18), 3238 (2007)

    Article  Google Scholar 

  3. P. Bhatt, S. S. Meena, M. D. Mukadam, B. P. Mandal, A. K. Chauhan, and S. M. Yusuf, Synthesis of CoFe Prussian blue analogue/polyvinylidene fluoride nanocomposite material with improved thermal stability and ferroelectric properties, New J. Chem. 42(6), 4567 (2018)

    Article  Google Scholar 

  4. K. I. Shivakumar, K. Swathi, T. C. Das Goudappagouda, A. Kumar, R. D. Makde, K. Vanka, K. S. Narayan, S. S. Babu, and G. J. Sanjayan, Mixed-stack charge transfer crystals of pillar[5]quinone and tetrathiafulvalene exhibiting ferroelectric features, Chemistry 23(51), 12630 (2017)

    Article  Google Scholar 

  5. R. H. Hu, Y. Sui, J. W. Wen, Z. G. Luo, and L. J. Zhong, A new type of organic ferroelectric N-dehydroabietyl-4-bromobenzamide, Asian J. Chem. 27(7), 2627 (2015)

    Article  Google Scholar 

  6. C. Y. Pan, S. Hu, D. G. Li, P. Ouyang, F. H. Zhao, and Y. Y. Zheng, The first ferroelectric templated borate: [Ni(en)2pip][B5O6(OH)4]2, Dalton Trans. 39(25), 5772 (2010)

    Article  Google Scholar 

  7. X. Z. Li, Z. R. Qu, and R. G. Xiong, A new chiral schiff base with ferroelectric property, Chin. J. Chem. 26(11), 1959 (2008)

    Article  Google Scholar 

  8. F. Du, H. Zhang, C. Tian, and S. Du, Synthesis and structure of two acentric heterometallic inorganic-organic hybrid frameworks with both nonlinear optical and ferroelectric properties, Cryst. Growth Des. 13(4), 1736 (2013)

    Article  Google Scholar 

  9. W. Zhang, H. Y. Ye, H. L. Cai, J. Z. Ge, R. G. Xiong, and S. D. Huang, Discovery of new ferroelectrics: [H2dbco]2·[Cl3]·[CuCl3(H2O)2]·H2O (dbco = 1, 4-diazabicyclo[2.2.2]octane), J. Am. Chem. Soc. 132(21), 7300 (2010)

    Article  Google Scholar 

  10. J. Wang, J. Q. Tao, X. J. Xu, and C. Y. Tan, Synthesis, crystal structure, and properties of a cadmium(II) complex with the flexible ligand (1_H-[2, 2]biimidazoly-1-yl)-acetic acid, Z. Anorg. Allg. Chem. 638(9), 1261 (2012)

    Article  Google Scholar 

  11. Y. M. Xie, J. H. Liu, X. Y. Wu, Z. G. Zhao, Q. S. Zhang, F. Wang, S. C. Chen, and C. Z. Lu, New ferroelectric and nonlinear optical porous coordination polymer constructed from a rare (CuBr) castellated chain, Cryst. Growth Des. 8(11), 3914 (2008)

    Article  Google Scholar 

  12. D. S. Liu, Y. Sui, W. T. Chen, and P. Feng, Two new nonlinear optical and ferroelectric Zn(II) compounds based on nicotinic acid and tetrazole derivative ligands, Cryst. Growth Des. 15(8), 4020 (2015)

    Article  Google Scholar 

  13. L. Song, S. W. Du, J. D. Lin, H. Zhou, and T. Li, A 3D metal-organic framework with rare 3-fold interpenetrating dia-g nets based on silver(I) and novel tetradentate imidazolate ligand: Synthesis, structure, and possible ferroelectric property, Cryst. Growth Des. 7(11), 2268 (2007)

    Article  Google Scholar 

  14. O. Sengupta, and P. S. Mukherjee, Mixed azide and 5-(Pyrimidyl)tetrazole bridged Co(II)/Mn(II) polymers: Synthesis, crystal structures, ferroelectric and magnetic behavior, Inorg. Chem. 49(18), 8583 (2010)

    Article  Google Scholar 

  15. W. W. Zhou, J. T. Chen, G. Xu, M. S. Wang, J. P. Zou, X. F. Long, G. J. Wang, G. C. Guo, and J. S. Huang, Nonlinear optical and ferroelectric properties of a 3-D Cd(II) triazolate complex with a novel (63)2(610·85) topology, Chem. Commun. (Camb.) (24), 2762 (2008)

    Article  Google Scholar 

  16. H. X. Zhao, G. L. Zhuang, S. T. Wu, L. S. Long, H. Y. Guo, Z. G. Ye, R. B. Huang, and L. S. Zheng, Experimental and theoretical demonstration of ferroelectric anisotropy in a one-dimensional copper(II)-based coordination polymer, Chem. Commun. (Camb.) (13), 1644 (2009)

    Google Scholar 

  17. Q. Ye, Y. Z. Tang, X. S. Wang, and R. G. Xiong, Strong enhancement of second-harmonic generation (SHG) response through multi-chiral centers and metal-coordination, Dalton Trans. (9), 1570 (2005)

    Google Scholar 

  18. G. X. Wang, G. F. Han, Q. Ye, R. G. Xiong, T. Akutagawa, T. Nakamura, P. W. H. Chan, and S. D. Huang, Dielectric anisotropy of a homochiral rare-earth metal complex, Dalton Trans. 19, 2527 (2008)

    Article  Google Scholar 

  19. S. T. Zheng and G. Y. Yang, The first polyoxometalate-templated four-fold interpenetrated coordination polymer with new topology and ferroelectricity, Dalton Trans. 39(3), 700 (2010)

    Article  Google Scholar 

  20. H. B. Duan, H. R. Zhao, X. M. Ren, H. Zhou, Z. F. Tian, and W. Q. Jin, Inorganic-organic hybrid compounds based on face-sharing octahedral [PbI3] chains: Self-assemblies, crystal structures, and ferroelectric, photoluminescence properties, Dalton Trans. 40(8), 1672 (2011)

    Article  Google Scholar 

  21. S. P. Zhao and X. M. Ren, Toward design of multiple-property inorganic-organic hybrid compounds based on face-sharing octahedral iodoplumbate chains, Dalton Trans. 40(33), 8261 (2011)

    Article  Google Scholar 

  22. H. R. Zhao, D. P. Li, X. M. Ren, Y. Song, and W. Q. Jin, Larger spontaneous polarization ferroelectric inorganic-organic hybrids: [PbI3] chains directed organic cations aggregation to Kagomé-shaped tubular architecture, J. Am. Chem. Soc. 132(1), 18 (2010)

    Article  Google Scholar 

  23. T. Hang, D. W. Fu, Q. Ye, H. Y. Ye, R. G. Xiong, and S. D. Huang, Tanklike metal-organic framework filled with perchloric acid and its dielectric-ferroelectric properties, Cryst. Growth Des. 9(5), 2054 (2009)

    Article  Google Scholar 

  24. Q. Ye, T. Hang, D. W. Fu, G. H. Xu, and R. G. Xiong, Typical ferroelectric olefin-copper(I) organometallic oligmer with flexible organic ligand, Cryst. Growth Des. 8(10), 3501 (2008)

    Article  Google Scholar 

  25. T. Hang, D. W. Fu, Q. Ye, and R. G. Xiong, Two novel noncentrosymmetric zinc coordination compounds with second harmonic generation response, and potential piezoelectric and ferroelectric properties, Cryst. Growth Des. 9(5), 2026 (2009)

    Article  Google Scholar 

  26. M. Mon, J. Ferrando-Soria, M. Verdaguer, C. Train, C. Paillard, B. Dkhil, C. Versace, R. Bruno, D. Armentano, and E. Pardo, Postsynthetic approach for the rational design of chiral ferroelectric metal-organic frameworks, J. Am. Chem. Soc. 139(24), 8098 (2017)

    Article  Google Scholar 

  27. P. C. Guo, Z. Chu, X. M. Ren, W. H. Ning, and W. Jin, Comparative study of structures, thermal stabilities and dielectric properties for a ferroelectric MOF [Sr(m-BDC)(DMF)] with its solvent-free framework, Dalton Trans. 42(18), 6603 (2013)

    Article  Google Scholar 

  28. W. K. Han, L. F. Qin, C. Y. Pang, C. K. Cheng, W. Zhu, Z. H. Li, Z. Li, X. Ren, and Z. G. Gu, Polymorphism of a chiral iron(II) complex: spin-crossover and ferroelectric properties, Dalton Trans. 46(25), 8004 (2017)

    Article  Google Scholar 

  29. D. P. Li, T. W. Wang, C. H. Li, D. S. Liu, Y. Z. Li, and X. Z. You, Single-ion magnets based on mononuclear lanthanide complexes with chiral Schiff base ligands [Ln(FTA)3L] (Ln = Sm, Eu, Gd, Tb and Dy), Chem. Commun. (Camb.) 46(17), 2929 (2010)

    Article  Google Scholar 

  30. W. Zhang, R. G. Xiong, and S. D. Huang, 3D framework containing Cu4Br4 cubane as connecting node with strong ferroelectricity, J. Am. Chem. Soc. 130(32), 10468 (2008)

    Article  Google Scholar 

  31. Y. Q. Zheng, W. Xu, H. L. Zhu, J. L. Lin, L. Zhao, and Y. R. Dong, New pyridine-2, 4, 6-tricarboxylato coordination polymers: Synthesis, crystal structures and properties, CrystEngComm 13(7), 2699 (2011)

    Article  Google Scholar 

  32. J. D. Lin, X. F. Long, P. Lin, and S. W. Du, A series of cation-templated, polycarboxylate-based Cd(II) or Cd(II)/Li(I) frameworks with second-order nonlinear optical and ferroelectric properties, Cryst. Growth Des. 10(1), 146 (2010)

    Article  Google Scholar 

  33. Q. Ye, Y. M. Song, G. X. Wang, K. Chen, D. W. Fu, P. W. H. Chan, J. S. Zhu, S. D. Huang, and R. G. Xiong, Ferroelectric metal-organic framework with a high dielectric constant, J. Am. Chem. Soc. 128(20), 6554 (2006)

    Article  Google Scholar 

  34. X. Q. Liang, J. T. Jia, T. Wu, D. P. Li, L. Liu, G. S. Tsolmon, and G. S. Zhu, A spontaneously resoluted zinc-organic framework with nonlinear optical and ferroelectric properties generated from tetrazolate-ethyl ester ligand, CrystEngCom 12(11), 3499 (2010)

    Article  Google Scholar 

  35. Z. Su, J. Fan, T. Okamura, W. Y. Sun, and N. Ueyama, Ligand-directed and ph-controlled assembly of chiral 3d-3d heterometallic metal-organic frameworks, Cryst. Growth Des. 10(8), 3515 (2010)

    Article  Google Scholar 

  36. L. Yu, X. N. Hua, X. J. Jiang, L. Qin, X. Z. Yan, L. H. Luo, and L. Han, Histidine-controlled homochiral and ferroelectric metal-organic frameworks, Cryst. Growth Des. 15(2), 687 (2015)

    Article  Google Scholar 

  37. Q. Ye, Y. M. Song, D. W. Fu, G. X. Wang, R. G. Xiong, P. W. H. Chan, and S. D. Huang, Deuteration effect of ferroelectricity and permittivity on homochiral zinc coordination compound, Cryst. Growth Des. 7(9), 1568 (2007)

    Article  Google Scholar 

  38. D. W. Fu, W. Zhang, and R. G. Xiong, Isotope effect on SHG response and ferroelectric properties of a homochiral zinc coordination compound containing tetrazole ligand, Cryst. Growth Des. 8(9), 3461 (2008)

    Article  Google Scholar 

  39. H. R. Wen, Y. Z. Tang, C. M. Liu, J. L. Chen, and C. L. Yu, One-dimensional homochiral cyano-bridged heterometallic chain coordination polymers with metamagnetic or ferroelectric properties, Inorg. Chem. 48(21), 10177 (2009)

    Article  Google Scholar 

  40. L. Li, J. Ma, C. Song, T. Chen, Z. Sun, S. Wang, J. Luo, and M. Hong, A 3D polar nanotubular coordination polymer with dynamic structural transformation and ferroelectric and nonlinear-optical properties, Inorg. Chem. 51(4), 2438 (2012)

    Article  Google Scholar 

  41. X. L. Li, C. L. Chen, L. F. Han, C. M. Liu, Y. Song, X. G. Yang, and S. M. Fang, First one-dimensional homochiral stairway-like Cu(II) chains: Crystal structures, circular dichroism (CD) spectra, ferroelectricity and antiferromagnetic properties, Dalton Trans. 42(14), 5036 (2013)

    Article  Google Scholar 

  42. X. L. Li, Z. Zhang, X. L. Zhang, J. L. Kang, A. L. Wang, L. Zhou, and S. Fang, A pair of dinuclear Re(I) enantiomers: synthesis, crystal structures, chiroptical and ferroelectric properties, Dalton Trans. 44(9), 4180 (2015)

    Article  Google Scholar 

  43. G. X. Wang, G. F. Han, Q. Ye, R. G. Xiong, T. Akutagawa, T. Nakamura, P. W. H. Chan, and S. D. Huang, Dielectric anisotropy of a homochiral rare-earth metal complex, Dalton Trans. (19), 2527 (2008)

  44. L. L. Liang, S. B. Ren, J. Zhang, Y. Z. Li, H. B. Du, and X. Z. You, Two unprecedented NLO-active coordination polymers constructed by a semi-rigid tetrahedral linker, Dalton Trans. 39(33), 7723 (2010)

    Article  Google Scholar 

  45. C. F. Wang, Z. G. Gu, X. M. Lu, J. L. Zuo, and X. Z. You, Ferroelectric heterobimetallic clusters with ferromagnetic interactions, Inorg. Chem. 47(18), 7957 (2008)

    Article  Google Scholar 

  46. Q. Ye, D. W. Fu, H. Tian, R. G. Xiong, P. W. H. Chan, and S. D. Huang, Multiferroic homochiral metal-organic framework, Inorg. Chem. 47(3), 772 (2008)

    Article  Google Scholar 

  47. L. Li, J. Ma, C. Song, T. Chen, Z. Sun, S. Wang, J. Luo, and M. Hong, A 3D polar nanotubular coordination polymer with dynamic structural transformation and ferroelectric and nonlinear-optical properties, Inorg. Chem. 51(4), 2438 (2012)

    Article  Google Scholar 

  48. D. Asthana, A. Kumar, A. Pathak, P. K. Sukul, S. Malik, R. Chatterjee, S. Patnaik, K. Rissanen, and P. Mukhopadhyay, An all-organic steroid-D-p-A modular design drives ferroelectricity in supramolecular solids and nano-architectures at RT, Chem. Commun. (Camb.) 47(31), 8928 (2011)

    Article  Google Scholar 

  49. Y. T. Wang, G. M. Tang, C. He, S. C. Yan, Q. C. Hao, L. Chen, X. F. Long, T. D. Li, and S. W. Ng, Nonlinear optical and ferroelectric materials based on 1-benzyl-2-phenyl-1H-benzimidazole salts, CrystEngComm 13(21), 6365 (2011)

    Article  Google Scholar 

  50. H. R. Chen, and W. W. Zhang, A novel two-dimensional CdII coordination polymer: poly[aqua[m4-2-(carboxylatobenzoyl)benzonato]-cadmium(II)], Acta Crystallogr. C 70(11), 1079 (2014)

    Article  Google Scholar 

  51. M. L. Feng, P. X. Li, K. Z. Du, and X. Y. Huang, [Ni(en)3][InSbS4]: A one-dimensional polymeric indium thioantimonate with a polar structure, Eur. J. Inorg. Chem. 2011(26), 3881 (2011)

    Article  Google Scholar 

  52. Z. Guo, R. Cao, X. Wang, H. Li, W. Yuan, G. Wang, H. Wu, and J. Li, A multifunctional 3D ferroelectric and NLO-active porous metal-organic framework, J. Am. Chem. Soc. 131(20), 6894 (2009)

    Article  Google Scholar 

  53. X. Duan, Q. Meng, Y. Su, Y. Li, C. Duan, X. Ren, and C. Lu, Multifunctional polythreading coordination polymers: Spontaneous resolution, nonlinear-optic, and ferroelectric properties, Chemistry 17(36), 9936 (2011)

    Article  Google Scholar 

  54. H. Zhao, Q. Ye, Z. R. Qu, D. W. Fu, R. G. Xiong, S. D. Huang, and P. W. H. Chan, Huge deuterated effect on permittivity in a metal-organic framework, Chemistry 14(4), 1164 (2008)

    Article  Google Scholar 

  55. Z. R. Qu, H. Zhao, Y. P. Wang, X. S. Wang, Q. Ye, Y. H. Li, R. G. Xiong, B. F. Abrahams, Z. G. Liu, Z. L. Xue, and X. Z. You, Synthesis of novel chiral and acentric coordination polymers by the reaction of zinc or cadmium salts with racemic 3-pyridyl-3-aminopropionic acid, Chemistry 10(1), 53 (2004)

    Article  Google Scholar 

  56. H. Zhao, Y. H. Li, X. S. Wang, Z. R. Qu, L. Z. Wang, R. G. Xiong, B. F. Abrahams, and Z. Xue, Noncentrosymmetric organic solids with very strong harmonic generation response, Chemistry 10(10), 2386 (2004)

    Article  Google Scholar 

  57. Z. R. Qu, Q. Ye, H. Zhao, D. W. Fu, H. Y. Ye, R. G. Xiong, T. Akutagawa, and T. Nakamura, Homochiral laminar europium metal-organic framework with unprecedented giant dielectric anisotropy, Chemistry 14(11), 3452 (2008)

    Article  Google Scholar 

  58. S. Bhattacharya, S. Pal, and S. Natarajan, Switchable room-temperature ferroelectric behavior, selective sorption and solvent-exchange studies of [H3O][Co2(dat)(sdba)2]·H2sdba·5H2O, ChemPlusChem 81(8), 733 (2016)

    Article  Google Scholar 

  59. Y. H. Tan, Y. M. Yu, J. B. Xiong, J. X. Gao, Q. Xu, C. W. Fu, Y. Z. Tang, and H. R. Wen, Synthesis, structure and ferroelectric-dielectric properties of an acentric 2D framework with imidazole-containing tripodal ligands, Polyhedron 70, 47 (2014)

    Article  Google Scholar 

  60. H. R. Wen, T. T. Qi, S. J. Liu, C. M. Liu, Y. Z. Tang, and J. L. Chen, Syntheses and structures of chiral tri- and tetranuclear Cd(II) clusters with luminescent and ferroelectric properties, Polyhedron 85, 894 (2015)

    Article  Google Scholar 

  61. X. P. Zhang, X. W. Qi, D. S. Zhang, L. H. Zhu, X. H. Wang, Z. F. Shi, and Q. Lin, Distinct optoelectronic properties of four-coordinate and five-coordinate Zn(II) complexes with chiral polypyridine ligands, Polyhedron 126, 111 (2017)

    Article  Google Scholar 

  62. Y. Z. Tang, Y. M. Yu, Y. H. Tan, J. S. Wu, J. B. Xiong, and H. R. Wen, Two acentric (6, 3) topological 2-D frameworks with imidazole-containing tripodal ligand and their ferroelectric properties, Dalton Trans. 42(28), 10106 (2013)

    Article  Google Scholar 

  63. L. Z. Chen and J. Sun, Reversible ferroelectric phase transition of 1,4-diazabicyclo [2, 2, 2]octane N,N′-dioxide di(perchlorate), Inorg. Chem. Commun. 76, 67 (2017)

    Article  Google Scholar 

  64. Y. T. Yang, Y. X. Che, and J. M. Zheng, A novel chiral helical coordination complex with ferroelectric and weak ferromagnetic properties, Inorg. Chem. Commun. 17, 49 (2012)

    Article  Google Scholar 

  65. Y. H. Zhou, J. Li, T. Wu, X. P. Zhao, Q. L. Xu, X. L. Li, M. B. Yu, L. L. Wang, P. Sun, and Y. X. Zheng, Photoluminescent and ferroelectric properties of a chiral rhenium(I) complex based on the chiral (−)−4, 5-pinene-2, 2′-bipyridine ligand, Inorg. Chem. Commun. 29, 18 (2013)

    Article  Google Scholar 

  66. X. Tan, Y. X. Che, and J. M. Zheng, Two chiral complexes constructed from mixed L-histidine and L-alanine/thiocyanate ligands: Synthesis, structure, ferromagnetic and ferroelectric properties, Inorg. Chem. Commun. 22, 10 (2012)

    Article  Google Scholar 

  67. Y. Wang, F. H. Zhao, A. H. Shi, Y. X. Che, and J. M. Zheng, Magnetic and ferroelectric properties of two Co(II) complexes based on flexible bis(imidazole) ligands, Inorg. Chem. Commun. 20, 23 (2012)

    Article  Google Scholar 

  68. Y. Wang, Y. X. Che, and J. M. Zheng, A 3D ferroelectric Co(II) polymer showing (3,5)-connected hms topology with 2-fold interpenetration, Inorg. Chem. Commun. 21, 69 (2012)

    Article  Google Scholar 

  69. F. H. Zhao, S. H. Liang, S. Jing, Y. Wang, Y. X. Che, and J. M. Zheng, Magnetic and ferroelectric properties of a chiral cyano-bridged Pr(III)-Cr(III) complex, Inorg. Chem. Commun. 21, 109 (2012)

    Article  Google Scholar 

  70. Y. Zhao, L. Luo, C. Liu, M. Chen, and W. Y. Sun, Helical silver(I) coordination polymer with oxazolinecontaining ligand: Structure, non-linear and ferroelectric property, Inorg. Chem. Commun. 14(7), 1145 (2011)

    Article  Google Scholar 

  71. Y. T. Wang, G. M. Tang, Y. Q. Wei, T. X. Qin, T. D. Li, J. B. Ling, and X. F. Long, One new nonlinear optical and ferroelectric one-dimensional chain constructed by an unsymmetric bridging ligand, Inorg. Chem. Commun. 12(11), 1164 (2009)

    Article  Google Scholar 

  72. F. Du, M. Zhao, X. Long, and S. Du, A new acentric heterometallic inorganic-organic hybrid framework with an unusual Cd3Na4 n array: NLO and ferroelectric properties, Inorg. Chem. Commun. 38, 39 (2013)

    Article  Google Scholar 

  73. Z. Su, G. C. Lv, J. Fan, G. X. Liu, and W. Y. Sun, Homochiral ferroelectric three-dimensional cadmium(II) frameworks from racemic camphoric acid and 3, 5-di(imidazol-1-yl)benzoic acid, Inorg. Chem. Commun. 38, 39 (2013)

    Article  Google Scholar 

  74. H. W. Kuai, J. J. Xia, and H. Y. Sang, Syntheses, characterization and properties of manganese, cobalt and copper complexes from chelate N-donor ligands, Inorg. Chem. Commun. 72, 73 (2016)

    Article  Google Scholar 

  75. X. L. Li, M. Hu, Y. J. Zhang, X. L. Zhang, F. C. Li, A. L. Wang, J. P. Du, and H. P. Xiao, Synthesis, crystal structure, chiroptical and ferroelectric properties of a multifunctional chiral silver(I) complex based on the chiral bis-bidentate bridging ligand, Inorg. Chim. Acta 444, 221 (2016)

    Article  Google Scholar 

  76. G. X. Liu, W. Guo, S. Nishihara, and X. M. Ren, A chiral copper(II) inverse-9-metallacrown-3 complex: Synthesis, crystal structure, ferroelectric and magnetic properties, Inorg. Chim. Acta 368(1), 165 (2011)

    Article  Google Scholar 

  77. W. W. Zhou, W. Zhao, B. Wei, F. W. Wang, Y. H. Chen, W. Y. Fang, and X. Zhao, A new 1D Cd(II) pyridinate polymer: Structure, second-harmonic generation response, dielectric and potential ferroelectric properties, Inorg. Chim. Acta 386, 17 (2012)

    Article  Google Scholar 

  78. L. Z. Chen, D. D. Huang, J. Z. Ge, and F. M. Wang, A novel Ag(I) coordination polymers based on 2-(pyridin-4-yl)-1H-imidazole-4, 5-dicarboxylic acid: Syntheses, structures, ferroelectric, dielectric and optical properties, Inorg. Chim. Acta 406, 95 (2013)

    Article  Google Scholar 

  79. X. F. Wang, G. X. Liu, and H. Zhou, Syntheses, structures and physical properties of two zinc(II) coordination polymers with 1, 3, 5-tris(imidazol-1-ylmethyl)-2, 4, 6-trimethylbenzene and 1, 3, 5-benzenetricarboxylate, Inorg. Chim. Acta 406, 223 (2013)

    Article  Google Scholar 

  80. W. Xu, W. Liu, F. Y. Yao, and Y. Q. Zheng, Synthesis, crystal structure and properties of the novel chiral 3D coordination polymer with S-carboxymethyl-l-cysteine, Inorg. Chim. Acta 365(1), 297 (2011)

    Article  Google Scholar 

  81. W. J. Ji, Q. G. Zhai, S. N. Li, Y. C. Jiang, and M. C. Hu, The first ionothermal synthesis of a 3D ferroelectric metal-organic framework with colossal dielectric constant, Chem. Commun. (Camb.) 47(13), 3834 (2011)

    Article  Google Scholar 

  82. H. Zhao, Z. R. Qu, Q. Ye, B. F. Abrahams, Y. P. Wang, Z. G. Liu, Z. Xue, R. G. Xiong, and X. Z. You, Ferroelectric copper quinine complexes, Chem. Mater. 15(22), 4166 (2003)

    Article  Google Scholar 

  83. F. H. Zhao, Y. X. Che, J. M. Zheng, F. Grandjean, and G. J. Long, Two acentric mononuclear molecular complexes with unusual magnetic and ferroelectric properties, Inorg. Chem. 51(8), 4862 (2012)

    Article  Google Scholar 

  84. T. Hang, D. W. Fu, Q. Ye, H. Y. Ye, R. G. Xiong, and S. D. Huang, Tanklike metal-organic framework filled with perchloric acid and its dielectric-ferroelectric properties, Cryst. Growth Des. 9(5), 2054 (2009)

    Article  Google Scholar 

  85. H. R. Wen, Y. Z. Tang, C. M. Liu, J. L. Chen, and C. L. Yu, One-dimensional homochiral cyano-bridged heterometallic chain coordination polymers with metamagnetic or ferroelectric properties, Inorg. Chem. 48(21), 10177 (2009)

    Article  Google Scholar 

  86. Y. T. Wang, G. M. Tang, Y. Q. Wei, T. X. Qin, T. D. Li, C. He, J. B. Ling, X. F. Long, and S. W. Ng, Two new nonlinear optical and ferroelectric three-dimensional metal-organic frameworks with an sqp-net, Cryst. Growth Des. 10(1), 25 (2010)

    Article  Google Scholar 

  87. Y. H. Li, Z. R. Qu, H. Zhao, Q. Ye, L. X. Xing, X. S. Wang, R. G. Xiong, and X. Z. You, A novel TGS-like inorganic-organic hybrid and a preliminary investigation of its possible ferroelectric behavior, Inorg. Chem. 43(13), 3768 (2004)

    Article  Google Scholar 

  88. Y. Z. Tang, M. Zhou, J. Huang, Y. H. Tan, J. S. Wu, and H. R. Wen, In situ synthesis and ferroelectric, shg response, and luminescent properties of a novel 3D acentric zinc coordination polymer, Inorg. Chem. 52(4), 1679 (2013)

    Article  Google Scholar 

  89. Z. G. Gu, X. H. Zhou, Y. B. Jin, R. G. Xiong, J. L. Zuo, and X. Z. You, Crystal structures and magnetic and ferroelectric properties of chiral layered metal-organic frameworks with dicyanamide as the bridging ligand, Inorg. Chem. 46(14), 5462 (2007)

    Article  Google Scholar 

  90. T. K. Pal, R. Katoch, A. Garg, and P. K. Bharadwaj, Metal-organic frameworks built from a linear rigid dicarboxylate and different colinkers: Trap of the Keto form of ethylacetoacetate, luminescence and ferroelectric studies, Cryst. Growth Des. 15(9), 4526 (2015)

    Article  Google Scholar 

  91. A. K. Gupta, D. De, R. Katoch, A. Garg, and P. K. Bharadwaj, Synthesis of a NbO type homochiral Cu(II) metal-organic framework: Ferroelectric behavior and heterogeneous catalysis of three-component coupling and pechmann reactions, Inorg. Chem. 56(8), 4697 (2017)

    Article  Google Scholar 

  92. M. Manivannan, S. A. M. Britto Dhas, and M. Jose, Ferroelectric behavior of organic terahertz radiating DAST crystal, J. Inorg. Organomet. Polym. 27(6), 1870 (2017)

    Article  Google Scholar 

  93. J. L. Qi, S. L. Ni, W. Xu, J. Y. Qian, and Y. Q. Zheng, The first two examples of (R)-2-chloromandelato coordination polymers: Synthesis, structure, magnetic and ferroelectric properties, J. Inorg. Organomet. Polym. 24(3), 600 (2014)

    Article  Google Scholar 

  94. C. Hou, Q. Liu, Y. Lu, T. Okamura, P. Wang, M. Chen, and W. Y. Sun, Metal-organic frameworks with N-(4-pyridylmethyl)iminodiacetate ligand: Synthesis, structure and sorption properties, Microporous Mesoporous Mater. 152, 96 (2012)

    Article  Google Scholar 

  95. D. P. Li, C. H. Li, J. Wang, L. C. Kang, T. Wu, Y. Z. Li, and X. Z. You, Synthesis and physical properties of two chiral terpyridyl europium(III) complexes with distinct crystal polarity, Eur. J. Inorg. Chem. 2009(32), 4844 (2009)

    Article  Google Scholar 

  96. Y. R. Xie, H. Zhao, X. S. Wang, Z. R. Qu, R. G. Xiong, X. Xue, Z. Xue, and X. Z. You, 2D chiral uranyl(VI) coordination polymers with second-harmonic generation response and ferroelectric properties, Eur. J. Inorg. Chem. 2003(20), 3712 (2003)

    Article  Google Scholar 

  97. M. L. Feng, P. X. Li, K. Z. Du, and X. Y. Huang, [Ni(en)3][InSbS4]: A one-dimensional polymeric indium thioantimonate with a polar structure, Eur. J. Inorg. Chem. 2011(26), 3881 (2011)

    Article  Google Scholar 

  98. A. A. Bahgat, S. M. Sayyah, and H. M. Abd-Elsalam, Study of ferroelectricity in polyaniline, Int. J. Polym. Mater. 52(6), 499 (2003)

    Article  Google Scholar 

  99. H. Zhao, Z. R. Qu, H. Y. Ye, and R. G. Xiong, In situ hydrothermal synthesis of tetrazole coordination polymers with interesting physical properties, Chem. Soc. Rev. 37(1), 84 (2008)

    Article  Google Scholar 

  100. J. D. Lin, C. Rong, R. X. Lv, Z. J. Wang, X. F. Long, G. C. Guo, and C. Y. Pan, A 3D metal-organic framework with a pcu net constructed from lead(II) and thiophene-2, 5-dicarboxylic acid: Synthesis, structure and ferroelectric property, J. Solid State Chem. 257, 34 (2018)

    Article  ADS  Google Scholar 

  101. L. H. Cao, Y. L. Wei, C. Ji, M. L. Ma, S. Q. Zang, and T. C. W. Mak, A multifunctional 3D chiral porous ferroelectric metal-organic framework for sensing small organic molecules and dye uptake, Chem. Asian J. 9(11), 3094 (2014)

    Article  Google Scholar 

  102. S. R. Sushrutha, S. Mohana, S. Pal, and S. Natarajan, Solvent-dependent delamination, restacking, and ferroelectric behavior in a new charge-separated layered compound: [NH4][Ag3(C9H5NO4S)2(C1 3H14N2)2]·8H2O Chem. Asian J. 12(1), 101 (2017)

    Article  Google Scholar 

  103. G. X. Liu, X. F. Wang, and H. Zhou, Versatile frameworks constructed from divalent metals with 4, 4′-methylenedibenzoic acid and imidazole derivative ligands: Syntheses, crystal structures and physical properties, J. Solid State Chem. 199, 305 (2013)

    Article  ADS  Google Scholar 

  104. D. S. Liu, W. T. Chen, G. M. Ye, J. Zhang, and Y. Sui, Synthesis and characterization of a multifunctional inorganic-organic hybrid mixed-valence copper(I/II) coordination polymer: [CuCN][Cu(isonic)2]n, J. Solid State Chem. 256, 14 (2017)

    Article  ADS  Google Scholar 

  105. Y. N. Ren, W. Xu, L. X. Zhou, and Y. Q. Zheng, Efficient tetracycline adsorption and photocatalytic degradation of rhodamine B by uranyl coordination polymer, J. Solid State Chem. 251, 105 (2017)

    Article  ADS  Google Scholar 

  106. X. X. Li, L. Cheng, and G. Y. Yang, Open frameworks based on mono-lanthanide-substituted polyoxometaloaluminate building units: Syntheses, structures and properties, J. Solid State Chem. 203, 193 (2013)

    Article  ADS  Google Scholar 

  107. H. W. Kuai, X. C. Cheng, D. H. Li, T. Hu, and X. H. Zhu, Syntheses, characterization and properties of silver, copper and palladium complexes from bis(oxazoline)-containing ligands, J. Solid State Chem. 228, 65 (2015)

    Article  ADS  Google Scholar 

  108. J. Zhang, M. Zhao, W. Xie, J. Jin, F. Xie, X. Song, S. Zhang, J. Wu, and Y. Tian, A series of novel cadmium(II) coordination polymers with photoluminescence and ferroelectric properties based on zwitterionic ligands, New J. Chem. 41(17), 9152 (2017)

    Article  Google Scholar 

  109. S. R. Sushrutha, S. Mohana, S. Pal, and S. Natarajan, Solvent-dependent delamination, restacking, and ferroelectric behavior in a new charge-separated layered compound: [NH4][Ag3(C9H5NO4S2 (C13H14N2)2]·8H2O, Chem. Asian J. 12(1), 101 (2017)

    Article  Google Scholar 

  110. A. K. Srivastava, B. Praveenkumar, I. K. Mahawar, P. Divya, S. Shalini, and R. Boomishankar, Anion driven [CuIIL2]n frameworks: Crystal structures, guest-encapsulation, dielectric, and possible ferroelectric properties, Chem. Mater. 26(12), 3811 (2014)

    Article  Google Scholar 

  111. G. X. Liu, W. Guo, S. Nishihara, and X. M. Ren, A chiral copper(II) inverse-9-metallacrown-3 complex: Synthesis, crystal structure, ferroelectric and magnetic properties, Inorg. Chim. Acta 368(1), 165 (2011)

    Article  Google Scholar 

  112. L. Z. Chen, D. D. Huang, J. Z. Ge, and F. M. Wang, A novel Ag(I) coordination polymers based on 2-(pyridin-4-yl)-1H-imidazole-4, 5-dicarboxylic acid: Syntheses, structures, ferroelectric, dielectric and optical properties, Inorg. Chim. Acta 406, 95 (2013)

    Article  Google Scholar 

  113. X. F. Wang, G. X. Liu, and H. Zhou, Syntheses, structures and physical properties of two zinc(II) coordination polymers with 1, 3, 5-tris(imidazol-1-ylmethyl)-2, 4, 6-trimethylbenzene and 1, 3, 5-benzenetricarboxylate, Inorg. Chim. Acta 406, 223 (2013)

    Article  Google Scholar 

  114. W. Xu, W. Liu, F. Y. Yao, and Y. Q. Zheng, Synthesis, crystal structure and properties of the novel chiral 3D coordination polymer with S-carboxymethyl-l-cysteine, Inorg. Chim. Acta 365(1), 297 (2011)

    Article  Google Scholar 

  115. X. K. Yu and Y. Q. Zheng, Syntheses, structures, dielectric and ferroelectric properties of a chiral coordination compound with m-nitro-benzoic acid, J. Coord. Chem. 66(12), 2208 (2013)

    Article  Google Scholar 

  116. W. G. Zhu, Y. Q. Zheng, L. X. Zhou, and H. L. Zhu, Structural diversity for three Zn(II) coordination polymers from 4-nitrobenzene-1, 2-dicarboxylate and bispyridyl ligand, J. Coord. Chem. 69(2), 270 (2016)

    Article  Google Scholar 

  117. J. L. Qi, S. L. Ni, W. Xu, and Y. Q. Zhang, Three Cu(II) (R)-2-chloromandelato complexes generated from dipyridyl-type ligands with different spacer lengths: syntheses, crystal structures, and ferroelectric properties, J. Coord. Chem. 67(13), 2287 (2014)

    Article  Google Scholar 

  118. C. J. Lin, J. L. Qi, Y. Q. Zheng, and J. L. Lin, Two new Cu(II) m-hydroxybenzoato complexes with chloro- and carboxylato-bridged dinuclear [Cu(μ2−Cl)(μ2−COO)Cu] cores, J. Coord. Chem. 66(21), 3877 (2013)

    Article  Google Scholar 

  119. W. Xu, H. S. Chang, W. Liu, and Y. Q. Zheng, Synthesis, crystal structure, and properties of a new lanthanide tartrate coordination polymer, Russ. J. Coord. Chem. 40(4), 251 (2014)

    Article  Google Scholar 

  120. L. Chen, G. Han, H. Ye, and R. Xiong, A new chiral quinoxaline derivative with ferroelectric property, Chin. J. Chem. 28(10), 1799 (2010)

    Article  Google Scholar 

  121. Z. Su, M. S. Chen, J. Fan, M. Chen, S. S. Chen, L. Luo, and W. Y. Sun, Spontaneous resolution of two homochiral ferroelectric cadmium (II) frameworks and an achiral framework from a one-pot reaction involving achiral rigid ligands, CrystEngComm 12(7), 2040 (2010)

    Article  Google Scholar 

  122. J. L. Qi, S. L. Ni, Y. Q. Zheng, and W. Xu, Syntheses, structural characterizations and ferroelectric properties of new Ce(III) coordination polymers via isomeric tartaric acid ligands, Solid State Sci. 28, 61 (2014)

    Article  Google Scholar 

  123. J. Zhang, M. Zhao, W. Xie, J. Jin, F. Xie, X. Song, S. Zhang, J. Wu, and Y. Tian, A series of novel cadmium(II) coordination polymers with photoluminescence and ferroelectric properties based on zwitterionic ligands, New J. Chem. 41(17), 9152 (2017)

    Article  Google Scholar 

  124. Y. Q. Zheng, H. L. Zhu, X. X. Guo, and J. Y. Liu, Synthesis, crystal structures and properties of three glutarato and adipato bridged manganese(II) coordination polymers under ambient conditions, Solid State Sci. 18, 42 (2013)

    Article  ADS  Google Scholar 

  125. Z. R. Qu, Z. F. Chen, J. Zhang, R. G. Xiong, B. F. Abrahams, and Z. L. Xue, The first highly stable homochiral Olefin-Copper(I) 2D coordination polymer grid based on quinine as a building block, Organometallics 22(14), 2814 (2003)

    Article  Google Scholar 

  126. D. P. Li, C. H. Li, J. Wang, L. C. Kang, T. Wu, Y. Z. Li, and X. Z. You, Synthesis and physical properties of two chiral terpyridyl europium(III) complexes with distinct crystal polarity, Eur. J. Inorg. Chem. 2009(32), 4844 (2009)

    Article  Google Scholar 

  127. Y. R. Xie, H. Zhao, X. S. Wang, Z. R. Qu, R. G. Xiong, X. Xue, Z. Xue, and X. Z. You, 2D chiral uranyl(VI) coordination polymers with second-harmonic generation response and ferroelectric properties, Eur. J. Inorg. Chem. 2003(20), 3712 (2003)

    Article  Google Scholar 

  128. M. L. Feng, P. X. Li, K. Z. Du, and X. Y. Huang, [Ni(en)3][InSbS4]: A one-dimensional polymeric indium thioantimonate with a polar structure, Eur. J. Inorg. Chem. 2011(26), 3881 (2011)

    Article  Google Scholar 

  129. W. Xu, H. S. Chang, W. Liu, and Y. Q. Zheng, Synthesis, crystal structure, and properties of a new lanthanide tartrate coordination polymer, Russ. J. Coord. Chem. 40(4), 251 (2014)

    Article  Google Scholar 

  130. H. Yu, M. Liu, X. Gao, and Z. Liu, Construction and crystal structure of a pair of tetranuclear Zn(II) chiral clusters that exhibit ferroelectric behavior under a higher frequency electric field at room temperature, Polyhedron 137, 217 (2017)

    Article  Google Scholar 

  131. C. F. Wang, J. X. Gao, C. Li, C. S. Yang, J. B. Xiong, and Y. Z. Tang, A novel co-crystallization molecular ferroelectric induced by the ordering of sulphate anions and hydrogen atoms, Inorg. Chem. Front. 5(10), 2413 (2018)

    Article  Google Scholar 

  132. Y. T. Wang, G. M. Tang, W. Z. Wan, Y. Wu, T. C. Tian, J. H. Wang, C. He, X. F. Long, J. J. Wang, and S. W. Ng, New homochiral ferroelectric supramolecular networks of complexes constructed by chiral S-naproxen ligand, CrystEngComm 14(10), 3802 (2012)

    Article  Google Scholar 

  133. M. Ahmad, R. Katoch, A. Garg, and P. K. Bharadwaj, A novel 3D 10-fold interpenetrated homochiralcoordination polymer: Large spontaneouspolarization, dielectric loss and emission studies, CrystEngComm 16(22), 4766 (2014)

    Article  Google Scholar 

  134. M. Liu, H. Yu, and Z. Liu, A pair of homochiral trinuclear Zn(II) clusters exhibiting unusual ferroelectric behaviour at high-temperature, CrystEngComm 21(14), 2355 (2019)

    Article  Google Scholar 

  135. S. Moharana, M. K. Mishra, B. Behera, and R. N. Mahaling, Enhanced dielectric properties of polyethylene glycol (PEG) modified BaTiO3 (BT)-poly(vinylidene fluoride) (PVDF) composites, Polym. Sci. A 59(3), 405 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zbigniew Tylczyński.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tylczyński, Z. A collection of 505 papers on false or unconfirmed ferroelectric properties in single crystals, ceramics and polymers. Front. Phys. 14, 63301 (2019). https://doi.org/10.1007/s11467-019-0912-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-019-0912-5

Keywords

Navigation