Skip to main content
Log in

Computationally predicting spin semiconductors and half metals from doped phosphorene monolayers

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

First-principles computations are performed to investigate phosphorene monolayers doped with 30 metal and nonmetal atoms. The binding energies indicate the stability of all doped configurations. Interestingly, the magnetic atom Co doping induces the absence of the magnetism while the magnetism is realized in phosphorene with substitutional doping of nonmagnetic atoms (O, S, Se, Si, Br, and Cl). The magnetic moment of transition metal (TM)-doped systems is suppressed in the range of 1.0–3.97 µB. The electronic properties of the doped systems are modulated differently; O, S, Se, Ni, and Ti doped systems become spin semiconductors, while V doping makes the system a half metal. These results demonstrate potential applications of functionalized phosphorene with external atoms, in particular to spintronics and dilute magnetic semiconductors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. K. Geim and K. S. Novoselov, The rise of graphene, Nat. Mater. 6(3), 183 (2007)

    ADS  Google Scholar 

  2. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, The electronic properties of graphene, Rev. Mod. Phys. 81(1), 109 (2009)

    ADS  Google Scholar 

  3. F. Schwierz, Graphene transistors, Nat. Nanotechnol. 5(7), 487 (2010)

    ADS  Google Scholar 

  4. Y. Wu, Y. M. Lin, A. A. Bol, K. A. Jenkins, F. Xia, D. B. Farmer, Y. Zhu, and P. Avouris, High-frequency, scaled graphene transistors on diamond-like carbon, Nature 472(7341), 74 (2011)

    ADS  Google Scholar 

  5. H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, and P. D. Ye, Phosphorene: An unexplored 2D semiconductor with a high hole mobility, ACS Nano 8(4), 4033 (2014)

    Google Scholar 

  6. K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Atomically thin MoS2: A new direct-gap semiconductor, Phys. Rev. Lett. 105(13), 136805 (2010)

    ADS  Google Scholar 

  7. A. Splendiani, L. Sun, Y. B. Zhang, T. S. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, Emerging photoluminescence in monolayer MoS2, Nano Lett. 10(4), 1271 (2010)

    ADS  Google Scholar 

  8. P. M. Bridgman, Two new modifications of phosphorus, J. Am. Chem. Soc. 36(7), 1344 (1914)

    Google Scholar 

  9. T. Nishii, Y. Maruyama, T. Inabe, and I. Shirotani, Synthesis and characterization of black phosphorus intercalation compounds, Synth. Met. 18(1–3), 559 (1987)

    Google Scholar 

  10. L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, Black phosphorus field-effect transistors, Nat. Nanotechnol. 9(5), 372 (2014)

    ADS  Google Scholar 

  11. E. S. Reich, Phosphorene excites materials scientists, Nature 506(7486), 19 (2014)

    ADS  Google Scholar 

  12. L. Shulenburger, A. D. Baczewski, Z. Zhu, J. Guan, and D. Tománek, The nature of the interlayer interaction in bulk and few-layer phosphorus, Nano Lett. 15(12), 8170 (2015)

    ADS  Google Scholar 

  13. T. Low, R. Rold’an, H. Wang, F. N. Xia, P. Avouris, L. M. Moreno, and F. Guinea, Plasmons and screening in monolayer and multilayer black phosphorus, Phys. Rev. Lett. 113(10), 106802 (2014)

    ADS  Google Scholar 

  14. A. S. Rodin, A. Carvalho, and A. H. Castro Neto, Strain-induced gap modification in black phosphorus, Phys. Rev. Lett. 112(17), 176801 (2014)

    ADS  Google Scholar 

  15. X. Ling, H. Wang, S. Huang, F. Xia, and M. S. Dresselhaus, The renaissance of black phosphorus, Proc. Natl. Acad. Sci. USA 112(15), 4523 (2015)

    ADS  Google Scholar 

  16. J. Qiao, X. Kong, Z. Hu, F. Yang, and W. Ji, High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus, Nat. Commun. 5(1), 4475 (2014)

    ADS  Google Scholar 

  17. F. Xia, H. Wang, and Y. Jia, Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics, Nat. Commun. 5(1), 4458 (2014)

    ADS  Google Scholar 

  18. R. Schuster, J. Trinckauf, C. Habenicht, M. Knupfer, and B. Büchner, Anisotropic particle-hole excitations in black phosphorus, Phys. Rev. Lett. 115(2), 026404 (2015)

    ADS  Google Scholar 

  19. J. Kim, S. S. Baik, S. H. Ryu, Y. Sohn, S. Park, B. G. Park, J. Denlinger, Y. Yi, H. J. Choi, and K. S. Kim, Observation of tunable band gap and anisotropic Dirac semimetal state in black phosphorus, Science 349(6249), 723 (2015)

    Google Scholar 

  20. P. K. Li and I. Appelbaum, Electrons and holes in phosphorene, Phys. Rev. B 90(11), 115439 (2014)

    ADS  Google Scholar 

  21. J. W. Jiang and H. S. Park, Negative Poisson’s ratio in single-layer black phosphorus, Nat. Commun. 5(1), 4727 (2014)

    ADS  Google Scholar 

  22. K. Sato, L. Bergqvist, J. Kudrnovský, P. H. Dederichs, O. Eriksson, I. Turek, B. Sanyal, G. Bouzerar, H. Katayama-Yoshida, V. A. Dinh, T. Fukushima, H. Kizaki, and R. Zeller, First-principles theory of dilute magnetic semiconductors, Rev. Mod. Phys. 82(2), 1633 (2010)

    ADS  Google Scholar 

  23. Z. F. Wang, S. Jin, and F. Liu, Spatially separated spin carriers in spin-semiconducting graphene nanoribbons, Phys. Rev. Lett. 111(9), 096803 (2013)

    ADS  Google Scholar 

  24. Y. C. Zhao and J. Ni, Spin-semiconducting properties in silicene nanoribbons, Phys. Chem. Chem. Phys. 16(29), 15477 (2014)

    Google Scholar 

  25. M. I. Katsnelson, V. Yu. Irkhin, L. Chioncel, A. I. Lichtenstein, and R. A. de Groot, Half-metallic ferromagnets: From band structure to many-body effects, Rev. Mod. Phys. 80(2), 315 (2008)

    ADS  Google Scholar 

  26. Y. Son, M. L. Cohen, and S. G. Louie, Half-metallic graphene nanoribbons, Nature 444(7117), 347 (2006)

    ADS  Google Scholar 

  27. D. D. Awschalom and M. E. Flatte, Challenges for semiconductor spintronics, Nat. Phys. 3(3), 153 (2007)

    Google Scholar 

  28. H. T. Wang, Q. X. Wang, Y. C. Cheng, K. Li, Y. B. Yao, Q. Zhang, C. Z. Dong, P. Wang, U. Schwingenschlögl, W. Yang, and X. X. Zhang, Doping monolayer graphene with single atom substitutions, Nano Lett. 12(1), 141 (2012)

    ADS  Google Scholar 

  29. A. V. Krasheninnikov, P. O. Lehtinen, A. S. Foster, P. Pyykkö, and R. M. Nieminen, Embedding transition-metal atoms in graphene: Structure, bonding, and magnetism, Phys. Rev. Lett. 102(12), 126807 (2009)

    ADS  Google Scholar 

  30. R. Wang, X. G. Ren, Z. Yan, L. J. Jiang, W. E. I. Sha, and C. G. Shan, Graphene based functional devices: A short review, Front. Phys. 14(1), 13603 (2019)

    ADS  Google Scholar 

  31. Z. N. Ma, J. B. Zhuang, X. Zhang, and Z. Zhou, SiP monolayers: New 2D structures of group IV–V compounds for visible-light photohydrolytic catalysts, Front. Phys. 13(3), 138104 (2018)

    ADS  Google Scholar 

  32. F. M. Xu, Z. Z. Yu, Z. R. Gong, and H. Jin, First-principles study on the electronic and transport properties of periodically nitrogen-doped graphene and carbon nanotube superlattices, Front. Phys. 12(4), 127306 (2017)

    ADS  Google Scholar 

  33. G. Kresse and J. Hafner, Ab initio molecular dynamics for liquid metals, Phys. Rev. B 47(1), 558 (1993)

    ADS  Google Scholar 

  34. G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59(3), 1758 (1999)

    ADS  Google Scholar 

  35. J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)

    ADS  Google Scholar 

  36. H. J. Monkhorst and J. D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13(12), 5188 (1976)

    ADS  MathSciNet  Google Scholar 

  37. A. Brown and S. Rundqvist, Refinement of the crystal structure of black phosphorus, Acta Crystallogr. 19(4), 684 (1965)

    Google Scholar 

  38. X. H. Peng, Q. Wei, and A. Copple, Strain-engineered direct-indirect band gap transition and its mechanism in two-dimensional phosphorene, Phys. Rev. B 90(8), 085402 (2014)

    ADS  Google Scholar 

  39. S. Das, W. Zhang, M. Demarteau, A. Hoffmann, M. Dubey, and A. K. Roelofs, Tunable transport gap in phosphorene, Nano Lett. 14(10), 5733 (2014)

    ADS  Google Scholar 

  40. K. T. Chan, J. Neaton, and M. L. Cohen, First-principles study of metal adatom adsorption on graphene, Phys. Rev. B 77(23), 235430 (2008)

    ADS  Google Scholar 

  41. T. T. Tung, F. Alotaibi, M. J. Nine, R. Silva, D. N. H. Tran, I. Janowska, and D. Losic, Engineering of highly conductive and ultra-thin nitrogen-doped graphene films by combined methods of microwave irradiation, ultrasonic spraying and thermal annealing, Chem. Eng. J. 338, 764 (2018)

    Google Scholar 

  42. D. Mombrú, R. Faccio, and A. W. Mombru, Possible causes for rippling in a multivacancy graphene system, Int. J. Quantum Chem. 118(7), e25529 (2018)

    Google Scholar 

Download references

Acknowledgements

This research was supported by the National Key Research and Development Program of China under Grant No. 2018YFB0703900 and the National Natural Science Foundation of China under Grant No. 11704322.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Geng Li  (李庚) or Zhen Zhou  (周震).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, JH., Li, G., Meng, XF. et al. Computationally predicting spin semiconductors and half metals from doped phosphorene monolayers. Front. Phys. 14, 43604 (2019). https://doi.org/10.1007/s11467-019-0904-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-019-0904-5

Keywords

Navigation