Transformation devices with optical nihility media and reduced realizations

Abstract

Starting from optical nihility media (ONM), we design several intriguing devices with transformation optics method in two dimensions, such as a wave splitter, a concave lens, a field rotator, a concentrator, and an invisibility cloak. Though the extreme anisotropic property of ONM hinders the fabrication of these devices. We demonstrate that those devices could be effectively realized by simplified materials with Fabry–Pérot resonances (FPs) at discrete frequencies. Moreover, we propose a reduced version of simplified materials with FPs to construct a concentrator and a rotator, which is feasible in experimental fabrications. The simulations of total scattering cross-sections confirm their functionalities.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    U. Leonhardt, Optical conformal mapping, Science 312(5781), 1777 (2006)

    ADS  MathSciNet  MATH  Google Scholar 

  2. 2.

    J. B. Pendry, D. Schurig, and D. R. Smith, Controlling electromagnetic fields, Science 312(5781), 1780 (2006)

    ADS  MathSciNet  MATH  Google Scholar 

  3. 3.

    U. Leonhardt and T. G. Philbin, General relativity in electrical engineering, New J. Phys. 8(10), 247 (2006)

    ADS  Google Scholar 

  4. 4.

    U. Leonhardt and T. Philbin, Geometry and Light: The Science of Invisibility, Dover Inc. Mineola, New York, 2010

    Google Scholar 

  5. 5.

    A. Einstein, Die grundlage der allgemeinen relativitätstheorie, Ann. Phys. 354(7), 769 (1916)

    MATH  Google Scholar 

  6. 6.

    H. Chen, C. T. Chan, and P. Sheng, Transformation optics and metamaterials, Nat. Mater. 9(5), 387 (2010)

    ADS  Google Scholar 

  7. 7.

    A. V. Kildishev and V. M. Shalaev, Transformation optics and metamaterials, Phys. Uspekhi 54(1), 53 (2011)

    ADS  Google Scholar 

  8. 8.

    B. Zhang, Electrodynamics of transformation-based invisibility cloaking, Light Sci. Appl. 1(10), e32 (2012)

    ADS  Google Scholar 

  9. 9.

    P. Kinsler and M. W. McCall, The futures of transformations and metamaterials, Photon. Nanostructures 15, 10 (2015)

    ADS  Google Scholar 

  10. 10.

    F. Sun, B. Zheng, H. Chen, W. Jiang, S. Guo, Y. Liu, Y. Ma, and S. He, Transformation Optics: From Classic Theory and Applications to its New Branches, Laser Photon. Rev. 11(6), 1700034 (2017)

    ADS  Google Scholar 

  11. 11.

    M. McCall, J. Pendry, V. Galdi, Y. Lai, S. Horsley, J. Li, J. Zhu, R. Mitchell-Thomas, O. Quevedo-Teruel, P. Tassin, V. Ginis, E. Martini, G. Minatti, S. Maci, M. Ebrahimpouri, Y. Hao, P. Kinsler, J. Gratus, J. M. Lukens, A. M. Weiner, U. Leonhardt, I. I. Smolyaninov, V. N. Smolyaninova, R. T. Thompson, M. Wegener, M. Kadic, and S. A. Cummer, Roadmap on transformation optics, J. Opt. 20(6), 063001 (2018)

    ADS  Google Scholar 

  12. 12.

    L. Xu and H. Chen, Conformal transformation optics, Nat. Photon. 9(1), 15 (2015)

    ADS  Google Scholar 

  13. 13.

    D. Schurig, J. Mock, B. Justice, S. A. Cummer, J. B. Pendry, A. Starr, and D. Smith, Metamaterial electromagnetic cloak at microwave frequencies, Science 314(5801), 977 (2006)

    ADS  Google Scholar 

  14. 14.

    J. Li and J. Pendry, Hiding under the carpet: A new strategy for cloaking, Phys. Rev. Lett. 101(20), 203901 (2008)

    ADS  Google Scholar 

  15. 15.

    R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, Broadband ground-plane cloak, Science 323(5912), 366 (2009)

    ADS  Google Scholar 

  16. 16.

    H. F. Ma and T. J. Cui, Three-dimensional broadband ground-plane cloak made of metamaterials, Nat. Commun. 1(3), 21 (2010)

    ADS  MathSciNet  Google Scholar 

  17. 17.

    M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations, Photon. Nanostructures 6(1), 87 (2008)

    ADS  Google Scholar 

  18. 18.

    M. M. Sadeghi, S. Li, L. Xu, B. Hou, and H. Chen, Transformation optics with Fabry–Pérot resonances, Sci. Rep. 5(1), 8680 (2015)

    ADS  Google Scholar 

  19. 19.

    P. Zhao, L. Xu, G. Cai, N. Liu, and H. Chen, A feasible approach to field concentrators of arbitrary shapes, Front. Phys. 13, 134205 (2018)

    Google Scholar 

  20. 20.

    M. Y. Zhou, L. Xu, L. C. Zhang, J. Wu, Y. B. Li, and H. Y. Chen, Perfect invisibility concentrator with simplified material parameters, Front. Phys. 13(5), 134101 (2018)

    ADS  Google Scholar 

  21. 21.

    H. Chen and C. Chan, Transformation media that rotate electromagnetic fields, Appl. Phys. Lett. 90(24), 241105 (2007)

    ADS  Google Scholar 

  22. 22.

    H. Chen and C. Chan, Electromagnetic wave manipulation by layered systems using the transformation media concept, Phys. Rev. B 78(5), 054204 (2008)

    ADS  Google Scholar 

  23. 23.

    H. Chen, B. Hou, S. Chen, X. Ao, W. Wen, and C. Chan, Design and experimental realization of a broadband transformation media field rotator at microwave frequencies, Phys. Rev. Lett. 102(18), 183903 (2009)

    ADS  Google Scholar 

  24. 24.

    A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, Electromagnetic wormholes and virtual magnetic monopoles from metamaterials, Phys. Rev. Lett. 99(18), 183901 (2007)

    ADS  Google Scholar 

  25. 25.

    H. Chen and C. T. Chan, Acoustic cloaking and transformation acoustics, J. Phys. D 43(11), 113001 (2010)

    ADS  Google Scholar 

  26. 26.

    C. Li, L. Xu, L. Zhu, S. Zou, Q. H. Liu, Z. Wang, and H. Chen, Concentrators for water waves, Phys. Rev. Lett. 121(10), 104501 (2018)

    ADS  Google Scholar 

  27. 27.

    H. Chen, J. Yang, J. Zi, and C. T. Chan, Transformation media for linear liquid surface waves, EPL 85(2), 24004 (2009)

    ADS  Google Scholar 

  28. 28.

    M. Brun, S. Guenneau, and A. B. Movchan, Achieving control of in-plane elastic waves, Appl. Phys. Lett. 94(6), 061903 (2009)

    ADS  Google Scholar 

  29. 29.

    A. Norris and A. Shuvalov, Elastic cloaking theory, Wave Motion 48(6), 525 (2011)

    MathSciNet  MATH  Google Scholar 

  30. 30.

    S. Narayana and Y. Sato, Heat flux manipulation with engineered thermal materials, Phys. Rev. Lett. 108(21), 214303 (2012)

    ADS  Google Scholar 

  31. 31.

    H. Xu, X. Shi, F. Gao, H. Sun, and B. Zhang, Ultrathin three-dimensional thermal cloak, Phys. Rev. Lett. 112(5), 054301 (2014)

    ADS  Google Scholar 

  32. 32.

    T. Han, X. Bai, D. Gao, J. T. Thong, B. Li, and C. W. Qiu, Experimental demonstration of a bilayer thermal cloak, Phys. Rev. Lett. 112(5), 054302 (2014)

    ADS  Google Scholar 

  33. 33.

    C. Fan, Y. Gao, and J. Huang, Shaped graded materials with an apparent negative thermal conductivity, Appl. Phys. Lett. 92(25), 251907 (2008)

    ADS  Google Scholar 

  34. 34.

    X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. Chan, Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials, Nat. Mater. 10(8), 582 (2011)

    ADS  Google Scholar 

  35. 35.

    J. Luo, Y. Yang, Z. Yao, W. Lu, B. Hou, Z. H. Hang, C. Chan, and Y. Lai, Ultratransparent media and transformation optics with shifted spatial dispersions, Phys. Rev. Lett. 117(22), 223901 (2016)

    ADS  Google Scholar 

  36. 36.

    A. Lakhtakia, On perfect lenses and nihility, Int. J. Infrared Millim. Waves 23(3), 339 (2002)

    Google Scholar 

  37. 37.

    I. Liberal and N. Engheta, Near-zero refractive index photonics, Nat. Photon. 11(3), 149 (2017)

    ADS  MATH  Google Scholar 

  38. 38.

    W. Yan, M. Yan, and M. Qiu, Generalized nihility media from transformation optics, J. Opt. 13(2), 024005 (2011)

    ADS  Google Scholar 

  39. 39.

    Q. He, S. Xiao, X. Li, and L. Zhou, Optic-null medium: Realization and applications, Opt. Express 21(23), 28948 (2013)

    ADS  Google Scholar 

  40. 40.

    F. Sun and S. He, Surface transformation with homogenous optic-null medium, Prog. Electromagnetics Res. 151, 169 (2015)

    Google Scholar 

  41. 41.

    J. B. Pendry, Negative refraction makes a perfect lens, Phys. Rev. Lett. 85(18), 3966 (2000)

    ADS  Google Scholar 

  42. 42.

    D. R. Smith, W. J. Padilla, D. Vier, S. C. Nemat-Nasser, and S. Schultz, Composite medium with simultaneously negative permeability and permittivity, Phys. Rev. Lett. 84(18), 4184 (2000)

    ADS  Google Scholar 

  43. 43.

    R. A. Shelby, D. R. Smith, and S. Schultz, Experimental verification of a negative index of refraction, Science 292(5514), 77 (2001)

    ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China for Excellent Young Scientists (Grant No. 61322504), the National Basic Research Program of China (Grant No. 2013CB035901), the Fundamental Research Funds for the Central Universities (Grant No. 20720170015), and the National Natural Science Foundation of China (Grants Nos. 51779224, 51579221, 51279180, 61705200, and 11874311).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Lin Xu or Huan-Yang Chen.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xu, L., Wu, Q., Zhou, Y. et al. Transformation devices with optical nihility media and reduced realizations. Front. Phys. 14, 42501 (2019). https://doi.org/10.1007/s11467-019-0891-6

Download citation

Keywords

  • transformation optics
  • optical nihility media
  • Fabry–Pérot resonances