Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

A two-density approach to the general many-body problem and a proof of principle for small atoms and molecules

Abstract

An extended electron model fully recovers many of the experimental results of quantum mechanics while it avoids many of the pitfalls and remains generally free of paradoxes. The formulation of the many-body electronic problem here resembles the Kohn–Sham formulation of standard density functional theory. However, rather than referring electronic properties to a large set of single electron orbitals, the extended electron model uses only mass density and field components, leading to a substantial increase in computational efficiency. To date, the Hohenberg–Kohn theorems have not been proved for a model of this type, nor has a universal energy functional been presented. In this paper, we address these problems and show that the Hohenberg–Kohn theorems do also hold for a density model of this type. We then present a proof-of-concept practical implementation of this method and show that it reproduces the accuracy of more widely used methods on a test-set of small atomic systems, thus paving the way for the development of fast, efficient and accurate codes on this basis.

This is a preview of subscription content, log in to check access.

References and notes

  1. 1.

    M. Levy, Universal variational functionals of electron densities, first-order density matrices, and natural spinorbitals and solution of the v-representability problem, Proc. Natl. Acad. Sci. USA 76, 6062 (1979)

  2. 2.

    M. Levy, J. P. Perdew, and V. Sahni, Exact differential equation for the density and ionization energy of a manyparticle system, Phys. Rev. A 30(5), 2745 (1984)

  3. 3.

    M. Pearson, E. Smargiassi, and P. A. Madden, Ab initio molecular dynamics with an orbital-free density functional, J. Phys.: Condens. Matter 5(19), 3221 (1993)

  4. 4.

    T. A. Wesolowski and Y. A. Wang, Recent Progress in Orbital-Free Density Functional Theory, Vol. 6, World Scientific, 2013

  5. 5.

    J. Lehtomäki, I. Makkonen, A. Harju, O. Lopez-Acevedo, and M. A. Caro, Orbital-free density functional theory implementation with the projector augmented-wave method, J. Chem. Phys. 141, 234102 (2014)

  6. 6.

    V. V. Karasiev and S. B. Trickey, in Advances in Quantum Chemistry, Vol. 71, Elsevier, 2015, pp 221–245

  7. 7.

    D. Garcia-Aldea and J. Alvarellos, Approach to kinetic energy density functionals: Nonlocal terms with the structure of the von Weizsäcker functional, Phys. Rev. A 77(2), 022502 (2008)

  8. 8.

    C. Huang and E. A. Carter, Nonlocal orbital-free kinetic energy density functional for semiconductors, Phys. Rev. B 81(4), 045206 (2010)

  9. 9.

    I. Shin and E. A. Carter, Enhanced von Weizsäcker Wang–Govind–Carter kinetic energy density functional for semiconductors, J. Chem. Phys. 140, 18A531 (2014)

  10. 10.

    W. Mi, A. Genova, and M. Pavanello, Nonlocal kinetic energy functionals by functional integration, J. Chem. Phys. 148(18), 184107 (2018)

  11. 11.

    L. A. Constantin, E. Fabiano, and F. Della Sala, Nonlocal kinetic energy functional from the jellium-with-gap model: Applications to orbital-free density functional theory, Phys. Rev. B 97, 205137 (2018)

  12. 12.

    L. A. Constantin, E. Fabiano, and F. Della Sala, Semilocal Pauli–Gaussian kinetic functionals for orbital-free density functional theory calculations of solids, J. Phys. Chem. Lett. 9(15), 4385 (2018)

  13. 13.

    W. Kohn and L. J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. 140(4A), A1133 (1965)

  14. 14.

    R. O. Jones, Density functional theory: Its origins, rise to prominence, and future, Rev. Mod. Phys. 87(3), 897 (2015)

  15. 15.

    V. Michaud-Rioux, L. Zhang, and H. Guo, RESCU: A real space electronic structure method, J. Comput. Phys. 307, 593 (2016)

  16. 16.

    J. M. Soler, E. Artacho, J. D. Gale, A. García, J. Junquera, P. Ordejón, and D. Sánchez-Portal, The SIESTA method for ab initio order-N materials simulation, J. Phys.: Condens. Matter 14(11), 2745 (2002)

  17. 17.

    C. K. Skylaris, P. D. Haynes, A. A. Mostofi, and M. C. Payne, Introducing ONETEP: Linear-scaling density functional simulations on parallel computers, J. Chem. Phys. 122(8), 084119 (2005)

  18. 18.

    F. Brockherde, L. Vogt, L. Li, M. E. Tuckerman, K. Burke, and K. R. Müller, Bypassing the Kohn–Sham equations with machine learning, Nat. Commun. 8(1), 872 (2017)

  19. 19.

    W. A. Hofer, Unconventional approach to orbital-free density functional theory derived from a model of extended electrons, Found. Phys. 41(4), 754 (2011)

  20. 20.

    T. Pope and W. Hofer, Spin in the extended electron model, Front. Phys. 12(3), 128503 (2017)

  21. 21.

    P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Phys. Rev. 136(3B), B864 (1964)

  22. 22.

    L. de Broglie, Wave mechanics and the atomic structure of matter and of radiation, J. Phys. Radium 8, 225 (1927)

  23. 23.

    D. Bohm, A suggested interpretation of the quantum theory in terms of “hidden” variables (I), Phys. Rev. 85, 166 (1952)

  24. 24.

    D. Bohm, A suggested interpretation of the quantum theory in terms of “hidden” variables (II), Phys. Rev. 85, 180 (1952)

  25. 25.

    D. Hestenes, Local observables in the Dirac theory, J. Math. Phys. 14, 893 (1973)

  26. 26.

    D. Hestenes, Quantum mechanics from self-interaction, Found. Phys. 15, 63 (1985)

  27. 27.

    D. Hestenes, The zitterbewegung interpretation of quantum Mechanics, Found. Phys. 20, 1213 (1990)

  28. 28.

    J. S. Bell, On the problem of hidden variables in quantum mechanics, Rev. Mod. Phys. 38(3), 447 (1966)

  29. 29.

    K. S. Bell, H. Rieder, G. Meyer, S. W. Hla, F. Moresco, K. F. Braun, K. Morgenstern, J. Repp, S. Foelsch, and L. Bartels, The scanning tunnelling microscope as an operative tool: Doing physics and chemistry with single atoms and molecules, Phil. Trans. R. Soc. Lond. A 362, 1207 (2004)

  30. 30.

    W. A. Hofer, Heisenberg, uncertainty, and the scanning tunneling microscope, Front. Phys. 7(2), 218 (2012)

  31. 31.

    D. Hestenes and G. Sobczyk, Clifford Algebra to Geometric Calculus: A unified language for mathematics and physics, Vol. 5, Springer Science & Business Media, 2012

  32. 32.

    S. Gull, A. Lasenby, and C. Doran, Imaginary numbers are not real — The geometric algebra of spacetime, Found. Phys. 23(9), 1175 (1993)

  33. 33.

    C. Doran and A. Lasenby, Geometric Algebra for Physicists, Cambridge University Press, 2003

  34. 34.

    G. Benenti, G. Strini, and G. Casati, Principles of Quantum Computation and Information, World Scientific, 2004

  35. 35.

    C. Doran, A. Lasenby, and S. Gull, States and operators in the spacetime algebra, Found. Phys. 23(9), 1239 (1993)

  36. 36.

    W. A. Hofer, Elements of physics for the 21st century, in: Journal of Physics: Conference Series, Vol. 504, IOP Publishing, 2014, p. 012014

  37. 37.

    W. A. Hofer, Solving the Einstein–Podolsky–Rosen puzzle: The origin of non-locality in Aspect-type experiments, Front. Phys. 7(5), 504 (2012)

  38. 38.

    M. Hamermesh, Galilean invariance and the Schrodinger equation, Ann. Phys. 9, 518 (1960)

  39. 39.

    L. M. Sander, H. B. Shore, and L. Sham, Surface Structure of Electron–Hole Droplets, Phys. Rev. Lett. 31(8), 533 (1973)

  40. 40.

    R. Kalia and P. Vashishta, Surface structure of electronhole drops in germanium and silicon, Phys. Rev. B 17(6), 2655 (1978)

  41. 41.

    E. Boroński and R. Nieminen, Electron–positron densityfunctional theory, Phys. Rev. B 34(6), 3820 (1986)

  42. 42.

    T. Kreibich and E. Gross, Multicomponent densityfunctional theory for electrons and nuclei, Phys. Rev. Lett. 86, 2984 (2001)

  43. 43.

    T. Kreibich, R. van Leeuwen, and E. K. U. Gross, Multicomponent density-functional theory for electrons and nuclei, Phys. Rev. A 78(2), 022501 (2008)

  44. 44.

    J. P. Perdew and A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems, Phys. Rev. B 23(10), 5048 (1981)

  45. 45.

    J. Paier, R. Hirschl, M. Marsman, and G. Kresse, The Perdew–Burke–Ernzerhof exchange-correlation functional applied to the G2-1 test set using a plane-wave basis set, J. Chem. Phys. 122(23), 234102 (2005)

  46. 46.

    D. R. Hamann, M. Schlüter, and C. Chiang, Normconserving pseudopotentials, Phys. Rev. Lett. 43(20), 1494 (1979)

  47. 47.

    J. P. Perdew and W. Yue, Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation, Phys. Rev. B 33(12), 8800 (1986)

  48. 48.

    J. A. Pople, P. M. Gill, and B. G. Johnson, Kohn–Sham density-functional theory within a finite basis set, Chem. Phys. Lett. 199(6), 557 (1992)

  49. 49.

    J. White and D. Bird, Implementation of gradientcorrected exchange-correlation potentials in Car-Parrinello total-energy calculations, Phys. Rev. B 50(7), 4954 (1994)

  50. 50.

    U. Barth and L. Hedin, A local exchange-correlation potential for the spin polarized case (i), J. Phys. C 5(13), 1629 (1972)

  51. 51.

    In this case, rather than summing equations (21) and (24), we subtract one from the other.

  52. 52.

    H. Eschrig and W. Pickett, Density functional theory of magnetic systems revisited, Solid State Commun. 118(3), 123 (2001)

  53. 53.

    N. I. Gidopoulos, Potential in spin-density-functional theory of noncollinear magnetism determined by the manyelectron ground state, Phys. Rev. B 75(13), 134408 (2007)

  54. 54.

    S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. I. Probert, K. Refson, and M. C. Payne, First principles methods using CASTEP, Z. Kristallogr. Cryst. Mater. 220(5/6), 567 (2005)

  55. 55.

    P. Hasnip and M. Probert, Auxiliary density functionals: A new class of methods for efficient, stable density functional theory calculations, arXiv: 1503.01420 (2015)

  56. 56.

    M. G. Medvedev, I. S. Bushmarinov, J. Sun, J. P. Perdew, and K. A. Lyssenko, Density functional theory is straying from the path toward the exact functional, Science 355(6320), 49 (2017)

  57. 57.

    E. Sim, S. Song, and K. Burke, Quantifying density errors in DFT, arXiv: 1809.10347 (2018)

  58. 58.

    D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Phys. Rev. B 41(11), 7892 (1990)

Download references

Acknowledgements

The authors acknowledge EPSRC funding for the UKCP consortium (Grant No. EP/K013610/1). This work was also supported by the North East Centre for Energy Materials (NECEM). Finally, this research made use of the Rocket High-Performance Computing service at Newcastle University.

Author information

Correspondence to Thomas Pope.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pope, T., Hofer, W. A two-density approach to the general many-body problem and a proof of principle for small atoms and molecules. Front. Phys. 14, 23604 (2019). https://doi.org/10.1007/s11467-018-0872-1

Download citation

Keywords

  • many-body
  • condensed matter
  • Hartree–Fock
  • density functional theory
  • extended electrons