Skip to main content
Log in

Finite temperature physics of 1D topological Kondo insulator: Stable Haldane phase, emergent energy scale and beyond

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

In recent years, interacting topological insulators have emerged as new frontiers in condensed matter physics, and the hotly studied topological Kondo insulator (TKI) is one of such prototypes. Although its zero-temperature ground-state has been widely investigated, the finite temperature physics on TKI is largely unknown. Here, we explore the finite temperature properties in a simplified model for TKI, namely the one-dimensional p-wave periodic Anderson model, with numerically exact determinant quantum Monte Carlo simulation. It is found that the topological Haldane phase established for groundstate is still stable against small thermal fluctuation and its characteristic edge magnetization develops at low temperature. Such facts emphasize the robustness of (symmetry-protected) topological order against temperature effect, which always exists at real physical world. Moreover, we use the saturated low-T spin structure factor and the 1/T - law of susceptibility to detect the free edge spin moment, interestingly the low-temperature upturn behavior of the latter one is similar to experimental finding in SmB6 at T < 50 K. It implies that similar physical mechanism may work both for idealized models and realistic correlated electron materials. We have also identified an emergent energy scale Tcr, which signals a crossover into interesting low-T regime and seems to be the expected Ruderman–Kittel–Kasuya–Yosida coupling. Finally, the collective Kondo screening effect has been examined and it is heavily reduced at boundary, which may give a fruitful playground for novel physics beyond the wellestablished Haldane phase and topological band insulators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Z. Hasan and C. L. Kane, Topological insulators, Rev. Mod. Phys. 82(4), 3045 (2010)

    Article  ADS  Google Scholar 

  2. X. L. Qi and S. C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys. 83(4), 1057 (2011)

    Article  ADS  Google Scholar 

  3. M. Hohenadler and F. F. Assaad, Correlation effects in two-dimensional topological insulators, J. Phys. Condens. Matter 25(14), 143201 (2013)

    Article  ADS  Google Scholar 

  4. A. Bansil, H. Lin, and T. Das, Topological band theory, Rev. Mod. Phys. 88(2), 021004 (2016)

    Article  ADS  Google Scholar 

  5. E. Witten, Fermion path integrals and topological phases, Rev. Mod. Phys. 88(3), 035001 (2016)

    Article  ADS  Google Scholar 

  6. C. K. Chiu, J. C. Y. Teo, A. P. Schnyder, and S. Ryu, Classification of topological quantum matter with symmetries, Rev. Mod. Phys. 88(3), 035005 (2016)

    Article  ADS  Google Scholar 

  7. T. Senthil, Symmetry-protected topological phases of quantum matter, Annu. Rev. Condens. Matter Phys. 6(1), 299 (2015)

    Article  ADS  Google Scholar 

  8. C. X. Liu, S. C. Zhang, and X. L. Qi, The quantum anomalous Hall effect: Theory and experiment, Annu. Rev. Condens. Matter Phys. 7(1), 301 (2016)

    Google Scholar 

  9. M. Dzero, J. Xia, V. Galitski, and P. Coleman, Topological Kondo insulators, Annu. Rev. Condens. Matter Phys. 7(1), 249 (2016)

    Article  ADS  Google Scholar 

  10. M. Dzero, K. Sun, V. Galitski, and P. Coleman, Topological Kondo insulators, Phys. Rev. Lett. 104(10), 106408 (2010)

    Article  ADS  Google Scholar 

  11. J. Jiang, S. Li, T. Zhang, Z. Sun, F. Chen, Z. R. Ye, M. Xu, Q. Q. Ge, S. Y. Tan, X. H. Niu, M. Xia, B. P. Xie, Y. F. Li, X. H. Chen, H. H. Wen, and D. L. Feng, Observation of possible topological in-gap surface states in the Kondo insulator SmB6 by photoemission, Nat. Commun. 4(1), 3010 (2013)

    Article  ADS  Google Scholar 

  12. M. Neupane, N. Alidoust, S. Y. Xu, T. Kondo, Y. Ishida, D. J. Kim, C. Liu, I. Belopolski, Y. J. Jo, T. R. Chang, H. T. Jeng, T. Durakiewicz, L. Balicas, H. Lin, A. Bansil, S. Shin, Z. Fisk, and M. Z. Hasan, Surface electronic structure of the topological Kondo-insulator candidate correlated electron system SmB6, Nat. Commun. 4(1), 2991 (2013)

    Article  ADS  Google Scholar 

  13. V. Alexandrov, P. Coleman, and O. Erten, Kondo Breakdown in Topological Kondo Insulators, Phys. Rev. Lett. 114(17), 177202 (2015)

    Article  ADS  Google Scholar 

  14. B. S. Tan, Y. T. Hsu, B. Zeng, M. C. Hatnean, N. Harrison, Z. Zhu, M. Hartstein, M. Kiourlappou, A. Srivastava, M. D. Johannes, T. P. Murphy, J. H. Park, L. Balicas, G. G. Lonzarich, G. Balakrishnan, and S. E. Sebastian, Unconventional Fermi surface in an insulating state, Science 349(6245), 287 (2015)

    Article  ADS  Google Scholar 

  15. G. Baskaran, Majorana Fermi sea in insulating SmB6: A proposal and a theory of quantum oscillations in Kondo insulators, arXiv: 1507.03477

  16. O. Erten, P. Y. Chang, P. Coleman, and A. M. Tsvelik, Skyrme Insulators: Insulators at the Brink of Superconductivity, Phys. Rev. Lett. 119(5), 057603 (2017)

    Article  ADS  Google Scholar 

  17. A. Thomson and S. Sachdev, Fractionalized Fermi liquid on the surface of a topological Kondo insulator, Phys. Rev. B 93(12), 125103 (2016)

    Article  ADS  Google Scholar 

  18. O. Erten, P. Ghaemi, and P. Coleman, Kondo breakdown and quantum oscillations in SmB6, Phys. Rev. Lett. 116(4), 046403 (2016)

    Article  ADS  Google Scholar 

  19. D. Chowdhury, I. Sodemann, and T. Senthil, Mixedvalence insulators with neutral Fermi surfaces, Nat. Commun. 9(1), 1766 (2018)

    Article  ADS  Google Scholar 

  20. I. Sodemann, D. Chowdhury, and T. Senthil, Quantum oscillations in insulators with neutral Fermi surfaces, Phys. Rev. B 97(4), 045152 (2018)

    Article  ADS  Google Scholar 

  21. Y. Zhong, Y. Liu, and H.-G. Luo, Topological phase in 1D topological Kondo insulator: Z2 topological insulator, Haldane-like phase and Kondo breakdown, Eur. Phys. J. B 90, 147 (2017)

    Article  ADS  Google Scholar 

  22. F. T. Lisandrini, A. M. Lobos, A. O. Dobry, and C. J. Gazza, Topological Kondo insulators in one dimension: Continuous Haldane-type ground-state evolution from the strongly interacting to the noninteracting limit, Phys. Rev. B 96(7), 075124 (2017)

    Article  ADS  Google Scholar 

  23. X. G. Wen, Zoo of quantum-topological phases of matter, Rev. Mod. Phys. 89(4), 041004 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  24. Y. F. Yang, Two-fluid model for heavy electron physics, Rep. Prog. Phys. 79(7), 074501 (2016)

    Article  ADS  Google Scholar 

  25. R. Blankenbecler, D. J. Scalapino, and R. L. Sugar, Monte Carlo calculations of coupled boson-fermion systems (I), Phys. Rev. D 24(8), 2278 (1981)

    Article  ADS  Google Scholar 

  26. J. E. Hirsch, Two-dimensional Hubbard model: Numerical simulation study, Phys. Rev. B 31(7), 4403 (1985)

    Article  ADS  Google Scholar 

  27. R. R. dos Santo, Introduction to quantum Monte Carlo simulations for fermionic systems, Braz. J. Phys. 33, 1 (2003)

    Google Scholar 

  28. M. Vekic, J. W. Cannon, D. J. Scalapino, R. T. Scalettar, and R. L. Sugar, Competition between Antiferromagnetic Order and Spin-Liquid Behavior in the Two-Dimensional Periodic Anderson Model at Half Filling, Phys. Rev. Lett. 74(12), 2367 (1995)

    Article  ADS  Google Scholar 

  29. M. Jiang, N. J. Curro, and R. T. Scalettar, Universal Knight shift anomaly in the periodic Anderson model, Phys. Rev. B 90(24), 241109(R) (2014)

    Article  ADS  Google Scholar 

  30. H. F. Lin, H. S. Tao, W. X. Guo, and W. M. Liu, Antiferromagnetism and Kondo screening on a honeycomb lattice, Chin. Phys. B 24(5), 057101 (2015)

    Article  ADS  Google Scholar 

  31. W. Hu, R. T. Scalettar, E. W. Huang, and B. Moritz, Effects of an additional conduction band on the singletantiferromagnet competition in the periodic Anderson model, Phys. Rev. B 95(23), 235122 (2017)

    Article  ADS  Google Scholar 

  32. J. Gubernatis, N. Kawashima, and P. Werner, Quantum Monte Carlo Methods: Algorithms for Lattice Models, Cambridge University Press, 2016

    Book  MATH  Google Scholar 

  33. T. Paiva, G. Esirgen, R. T. Scalettar, C. Huscroft, and A. K. McMahan, Doping-dependent study of the periodic Anderson model in three dimensions, Phys. Rev. B 68(19), 195111 (2003)

    Article  ADS  Google Scholar 

  34. H. L. Nourse, I. P. McCulloch, C. Janani, and B. J. Powell, Haldane insulator protected by reflection symmetry in the doped Hubbard model on the three-legged ladder, Phys. Rev. B 94(21), 214418 (2016)

    Article  ADS  Google Scholar 

  35. A. M. Lobos, A. O. Dobry, and V. Galitski, Magnetic end states in a strongly interacting one-dimensional topological Kondo Insulator, Phys. Rev. X 5(2), 021017 (2015)

    Google Scholar 

  36. A. Mezio, A. M. Lobos, A. O. Dobry, and C. J. Gazza, Haldane phase in one-dimensional topological Kondo insulators, Phys. Rev. B 92(20), 205128 (2015)

    Article  ADS  Google Scholar 

  37. I. Hagymási and O. Legeza, Characterization of a correlated topological Kondo insulator in one dimension, Phys. Rev. B 93(16), 165104 (2016)

    Article  ADS  Google Scholar 

  38. J. C. Nickerson, R. M. White, K. N. Lee, R. Bachmann, R. Geballe, and G. W. Hull, Physical properties of SmB6, Phys. Rev. B 3(6), 2030 (1971)

    Article  ADS  Google Scholar 

  39. P. Coleman, Introduction to Many Body Physics, Chapters 15 to 18, Cambridge University Press, 2015

    Book  MATH  Google Scholar 

  40. K. Kummer, S. Patil, A. Chikina, M. Güttler, M. Höppner, et al., Temperature-independent Fermi surface in the Kondo lattice YbRh2Si2, Phys. Rev. X 5(1), 011028 (2015)

    Google Scholar 

  41. Q. Y. Chen, D. F. Xu, X. H. Niu, J. Jiang, R. Peng, et al., Direct observation of how the heavy-fermion state develops in CeCoIn5, Phys. Rev. B 96(4), 045107 (2017)

    Article  ADS  Google Scholar 

  42. E. Abrahams, J. Schmalian, and P. Wölfle, Strongcoupling theory of heavy-fermion criticality, Phys. Rev. B 90(4), 045105 (2014)

    Article  ADS  Google Scholar 

  43. V. R. Shaginyan, A. Z. Msezane, G. S. Japaridze, K. G. Popov, and V. A. Khodel, Strongly correlated Fermi systems as a new state of matter, Front. Phys. 11(5), 117103 (2016)

    Article  Google Scholar 

  44. Q. Si, S. Rabello, K. Ingersent, and J. L. Smith, Locally critical quantum phase transitions in strongly correlated metals, Nature 413(6858), 804 (2001)

    Article  ADS  Google Scholar 

  45. T. Senthil, M. Vojta, and S. Sachdev, Weak magnetism and non-Fermi liquids near heavy-fermion critical points, Phys. Rev. B 69(3), 035111 (2004)

    Article  ADS  Google Scholar 

  46. I. Paul, C. Pépin, and M. R. Norman, Kondo Breakdown and Hybridization Fluctuations in the Kondo-Heisenberg Lattice, Phys. Rev. Lett. 98(2), 026402 (2007)

    Article  ADS  Google Scholar 

  47. Y. Zhong, K. Liu, Y. Q. Wang, and H. G. Luo, Alternative Kondo breakdown mechanism: Orbital-selective orthogonal metal transition, Phys. Rev. B Condens. Matter Mater. Phys. 86(11), 115113 (2012)

    Article  ADS  Google Scholar 

  48. M. Hartstein, W. H. Toews, Y. T. Hsu, B. Zeng, X. Chen, et al., Fermi surface in the absence of a Fermi liquid in the Kondo insulator SmB6, Nat. Phys. 14(2), 166 (2017)

    Article  Google Scholar 

  49. Y. Zhong, Y. Liu, and H. G. Luo, Simulating heavy fermion physics in optical lattice: Periodic Anderson model with harmonic trapping potential, Front. Phys. 12(5), 127502 (2017)

    Article  Google Scholar 

  50. R. C. Caro, R. Franco, and J. Silva-Valencia, Spin-liquid state in an inhomogeneous periodic Anderson model, Phys. Rev. A 97(2), 023630 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was supported in part by the National Natural Science Foundation of China under Grant Nos. 11325417, 11674139, and 11704166, the Fundamental Research Funds for the Central Universities, Science Challenge Project under Grant No. JCKY2016212A502, SPC-Lab Research Fund (NO. XKFZ201605) and the Foundation of LCP.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yin Zhong, Yu Liu or Hong-Gang Luo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, Y., Wang, Q., Liu, Y. et al. Finite temperature physics of 1D topological Kondo insulator: Stable Haldane phase, emergent energy scale and beyond. Front. Phys. 14, 23602 (2019). https://doi.org/10.1007/s11467-018-0868-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-018-0868-x

Keywords

Navigation