Impurity-induced bound states as a signature of pairing symmetry in multiband superconducting CeCu2Si2


The notion of multiband superconductivity with dominant two-gap features has been recently applied to the unconventional superconductor CeCu2Si2 for challenging the previously accepted concept of nodal d-wave pairing. In the proposed study, the realistic multiband Fermi surface topology of CeCu2Si2 was obtained through first-principles calculations, and analysis was conducted with an effective two-band hybridization model including detailed band structure. Within the T-matrix approximation, the obtained calculation results show that different pairing candidates, including fully gapped s-wave, loop-nodal s-wave, and d-wave pairings, could yield qualitatively distinct features characterized by impurity-induced bound states. These features can be verified through high-resolution scanning tunneling microscopy or spectroscopy and provide corroborative justification that would be beneficial for the ongoing research regarding the superconducting gap symmetry of CeCu2Si2 at ambient pressure.

This is a preview of subscription content, log in to check access.


  1. 1.

    F. Steglich, J. Aarts, C. D. Bredl, W. Lieke, D. Meschede, W. Franz, and H. Schafer, Superconductivity in the presence of strong pauli paramagnetism: CeCu2Si2, Phys. Rev. Lett. 43(25), 1892 (1979)

    ADS  Article  Google Scholar 

  2. 2.

    H. Q. Yuan, F. M. Grosche, M. Deppe, C. Geibel, G. Sparn, and F. Steglich, Observation of two distinct superconducting phases in CeCu2Si2, Science 302(5653), 2104 (2003)

    ADS  Article  Google Scholar 

  3. 3.

    F. Steglich, Twenty-five years of heavy-fermion superconductivity, Physica B 359–361, 326 (2005)

    Article  Google Scholar 

  4. 4.

    C. Bredl, H. Spille, U. Rauchschwalbe, W. Lieke, F. Steglich, G. Cordier, W. Assmus, M. Herrmann, and J. Aarts, Gapless superconductivity and variation of Tc in the heavy-fermion system CeCu2Si2, J. Magn. Magn. Mater. 31–34, 373 (1983)

    Article  Google Scholar 

  5. 5.

    J. Arndt, O. Stockert, K. Schmalzl, E. Faulhaber, H. S. Jeevan, C. Geibel, W. Schmidt, M. Loewenhaupt, and F. Steglich, Spin fluctuations in normal state CeCu2Si2 on approaching the quantum critical point, Phys. Rev. Lett. 106(24), 246401 (2011)

    ADS  Article  Google Scholar 

  6. 6.

    K. Ueda, Y. Kitaoka, H. Yamada, Y. Kohori, T. Kohara, and K. Asayama, 29Si knight shift in the heavy-fermion superconductor CeCu2Si2, J. Phys. Soc. Jpn. 56(3), 867 (1987)

    ADS  Article  Google Scholar 

  7. 7.

    Y. Kitaoka, K. Ueda, K. Fujiwara, H. Arimoto, H. Iida, and K. Asayama, NMR investigation of superconductivity and Kondo-coherency in CeCu2Si2, J. Phys. Soc. Jpn. 55(3), 723 (1986)

    ADS  Article  Google Scholar 

  8. 8.

    K. Fujiwara, Y. Hata, K. Kobayashi, K. Miyoshi, J. Takeuchi, Y. Shimaoka, H. Kotegawa, T. C. Kobayashi, C. Geibel, and F. Steglich, High pressure NQR measurement in CeCu2Si2 up to sudden disappearance of superconductivity, J. Phys. Soc. Jpn. 77(12), 123711 (2008)

    ADS  Article  Google Scholar 

  9. 9.

    O. Stockert, J. Arndt, E. Faulhaber, C. Geibel, H. S. Jeevan, S. Kirchner, M. Loewenhaupt, K. Schmalzl, W. Schmidt, Q. Si, and F. Steglich, Magnetically driven superconductivity in CeCu2Si2, Nat. Phys. 7(2), 119 (2011)

    Article  Google Scholar 

  10. 10.

    H. A. Vieyra, N. Oeschler, S. Seiro, H. S. Jeevan, C. Geibel, D. Parker, and F. Steglich, Determination of gap symmetry from angle-dependent Hc2 measurements on CeCu2Si2, Phys. Rev. Lett. 106(20), 207001 (2011)

    ADS  Article  Google Scholar 

  11. 11.

    I. Eremin, G. Zwicknagl, P. Thalmeier, and P. Fulde, Feedback spin resonance in superconducting CeCu2Si2 and CeCoIn5, Phys. Rev. Lett. 101(18), 187001 (2008)

    ADS  Article  Google Scholar 

  12. 12.

    S. Kittaka, Y. Aoki, Y. Shimura, T. Sakakibara, S. Seiro, C. Geibel, F. Steglich, H. Ikeda, and K. Machida, Multiband superconductivity with unexpected deficiency of nodal quasiparticles in CeCu2Si2, Phys. Rev. Lett. 112(6), 067002 (2014)

    ADS  Article  Google Scholar 

  13. 13.

    S. Kittaka, Y. Aoki, Y. Shimura, T. Sakakibara, S. Seiro, C. Geibel, F. Steglich, Y. Tsutsumi, H. Ikeda, and K. Machida, Thermodynamic study of gap structure and pair-breaking effect by magnetic field in the heavyfermion superconductor CeCu2Si2, Phys. Rev. B 94(5), 054514 (2016)

    ADS  Article  Google Scholar 

  14. 14.

    M. Enayat, Z. Sun, A. Maldonado, H. Suderow, S. Seiro, C. Geibel, S. Wirth, F. Steglich, and P. Wahl, Superconducting gap and vortex lattice of the heavy-fermion compound CeCu2Si2, Phys. Rev. B 93(4), 045123 (2016)

    ADS  Article  Google Scholar 

  15. 15.

    G. M. Pang, M. Smidman, J. L. Zhang, L. Jiao, Z. F. Weng, E. M. Nica, Y. Chen, W. B. Jiang, Y. J. Zhang, H. S. Jeevan, P. Gegenwart, F. Steglich, Q. Si, and H. Q. Yuan, Fully gapped d-wave superconductivity in CeCu2Si2, Proc. Nat. Acad. Sci. 115, 5343 (2018), arXiv: 1605.04786

    ADS  Article  Google Scholar 

  16. 16.

    T. Takenaka, Y. Mizukami, J. A. Wilcox, M. Konczykowski, S. Seiro, C. Geibel, Y. Tokiwa, Y. Kasahara, C. Putzke, Y. Matsuda, A. Carrington, and T. Shibauchi, Full-gap superconductivity robust against disorder in heavy-fermion CeCu2Si2, Phys. Rev. Lett. 119(7), 077001 (2017)

    ADS  Article  Google Scholar 

  17. 17.

    Y. Li, M. Liu, Z. Fu, X. Chen, F. Yang, and Y. F. Yang, Gap symmetry of the heavy fermion superconductor CeCu2Si2 at ambient pressure, Phys. Rev. Lett. 120(21), 217001 (2018)

    ADS  Article  Google Scholar 

  18. 18.

    H. Ikeda, M. Suzuki, and R. Arita, Emergent loop-nodal s-wave superconductivity in CeCu2Si2: Similarities to the iron-based superconductors, Phys. Rev. Lett. 114(14), 147003 (2015)

    ADS  Article  Google Scholar 

  19. 19.

    Ø. Fischer, M. Kugler, I. Maggio-Aprile, C. Berthod, and C. Renner, Scanning tunneling spectroscopy of hightemperature superconductors, Rev. Mod. Phys. 79(1), 353 (2007)

    ADS  Article  Google Scholar 

  20. 20.

    G. Knebel, D. Aoki, and J. Flouquet, Antiferromagnetism and superconductivity in cerium based heavy-fermion compounds, C. R. Phys. 12(5–6), 542 (2011)

    ADS  Article  Google Scholar 

  21. 21.

    G. Stewart, Non-Fermi-liquid behavior in d- and felectron metals, Rev. Mod. Phys. 73(4), 797 (2001)

    ADS  Article  Google Scholar 

  22. 22.

    G. R. Stewart, Heavy-fermion systems, Rev. Mod. Phys. 56(4), 755 (1984)

    ADS  Article  Google Scholar 

  23. 23.

    P. Aynajian, E. H. da Silva Neto, A. Gyenis, R. E. Baumbach, J. D. Thompson, Z. Fisk, E. D. Bauer, and A. Yazdani, Visualizing heavy fermions emerging in a quantum critical Kondo lattice, Nature 486(7402), 201 (2012)

    ADS  Article  Google Scholar 

  24. 24.

    M. P. Allan, F. Massee, D. K. Morr, J. van Dyke, A. W. Rost, A. P. Mackenzie, C. Petrovic, and J. C. Davis, Imaging Cooper pairing of heavy fermions in CeCoIn5, Nat. Phys. 9(8), 468 (2013)

    Article  Google Scholar 

  25. 25.

    B. B. Zhou, S. Misra, E. H. da Silva Neto, P. Aynajian, R. E. Baumbach, J. D. Thompson, E. D. Bauer, and A. Yazdani, Visualizing nodal heavy fermion superconductivity in CeCoIn5, Nat. Phys. 9(8), 474 (2013)

    Article  Google Scholar 

  26. 26.

    B. Liu, Nonmagnetic impurity resonance states as a test of superconducting pairing symmetry in CeCoIn5, Phys. Rev. B 88(24), 245127 (2013)

    ADS  Article  Google Scholar 

  27. 27.

    G. Zhang, B. Liu, Y. Yang, and S. Feng, Spatial modulation of unitary impurity-induced resonances in superconducting CeCoIn5, Front. Phys. 11(3), 117402 (2016)

    Article  Google Scholar 

  28. 28.

    G. Zwicknagl and U. Pulst, CeCu2Si2: Renormalized band structure, quasiparticles and co-operative phenomena, Physica B 186–188, 895 (1993)

    Article  Google Scholar 

  29. 29.

    A. V. Balatsky, I. Vekhter, and J. X. Zhu, Impurityinduced states in conventional and unconventional superconductors, Rev. Mod. Phys. 78(2), 373 (2006)

    ADS  Article  Google Scholar 

  30. 30.

    S. H. Pan, E. W. Hudson, K. M. Lang, H. Eisaki, S. Uchida, and J. C. Davis, Imaging the effects of individual zinc impurity atoms on superconductivity in Bi2Sr2CaCu2O8+d, Nature 403(6771), 746 (2000)

    ADS  Article  Google Scholar 

  31. 31.

    S. H. Pan, J. P. O’Neal, R. L. Badzey, C. Chamon, H. Ding, J. R. Engelbrecht, Z. Wang, H. Eisaki, S. Uchida, A. K. Gupta, K. W. Ng, E. W. Hudson, K. M. Lang, and J. C. Davis, Microscopic electronic inhomogeneity in the high-T c superconductor Bi2Sr2CaCu2O8+x, Nature 413(6853), 282 (2001)

    ADS  Article  Google Scholar 

Download references


This work was supported by the National Natural Science Foundation of China under Grant Nos. 11774025, 11774401, and 11522435. Y. Y. was also supported by the National Key R&D Program of China (Grant No. 2017YFA0303103) and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB07020200). S. F. was supported by the National Key R&D Program of China (Grant No. 2016YFA0300304).

Author information



Corresponding authors

Correspondence to Bin Liu or Yi-Feng Yang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Liu, B., Liu, M. et al. Impurity-induced bound states as a signature of pairing symmetry in multiband superconducting CeCu2Si2. Front. Phys. 14, 13501 (2019).

Download citation


  • heavy-fermion superconductivity
  • pairing symmetry
  • impurity effect
  • local density of states