Frontiers of Physics

, 14:13501 | Cite as

Impurity-induced bound states as a signature of pairing symmetry in multiband superconducting CeCu2Si2

  • Dong-Dong Wang
  • Bin LiuEmail author
  • Min Liu
  • Yi-Feng YangEmail author
  • Shi-Ping Feng


The notion of multiband superconductivity with dominant two-gap features has been recently applied to the unconventional superconductor CeCu2Si2 for challenging the previously accepted concept of nodal d-wave pairing. In the proposed study, the realistic multiband Fermi surface topology of CeCu2Si2 was obtained through first-principles calculations, and analysis was conducted with an effective two-band hybridization model including detailed band structure. Within the T-matrix approximation, the obtained calculation results show that different pairing candidates, including fully gapped s-wave, loop-nodal s-wave, and d-wave pairings, could yield qualitatively distinct features characterized by impurity-induced bound states. These features can be verified through high-resolution scanning tunneling microscopy or spectroscopy and provide corroborative justification that would be beneficial for the ongoing research regarding the superconducting gap symmetry of CeCu2Si2 at ambient pressure.


heavy-fermion superconductivity pairing symmetry impurity effect local density of states 



This work was supported by the National Natural Science Foundation of China under Grant Nos. 11774025, 11774401, and 11522435. Y. Y. was also supported by the National Key R&D Program of China (Grant No. 2017YFA0303103) and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB07020200). S. F. was supported by the National Key R&D Program of China (Grant No. 2016YFA0300304).


  1. 1.
    F. Steglich, J. Aarts, C. D. Bredl, W. Lieke, D. Meschede, W. Franz, and H. Schafer, Superconductivity in the presence of strong pauli paramagnetism: CeCu2Si2, Phys. Rev. Lett. 43(25), 1892 (1979)ADSCrossRefGoogle Scholar
  2. 2.
    H. Q. Yuan, F. M. Grosche, M. Deppe, C. Geibel, G. Sparn, and F. Steglich, Observation of two distinct superconducting phases in CeCu2Si2, Science 302(5653), 2104 (2003)ADSCrossRefGoogle Scholar
  3. 3.
    F. Steglich, Twenty-five years of heavy-fermion superconductivity, Physica B 359–361, 326 (2005)CrossRefGoogle Scholar
  4. 4.
    C. Bredl, H. Spille, U. Rauchschwalbe, W. Lieke, F. Steglich, G. Cordier, W. Assmus, M. Herrmann, and J. Aarts, Gapless superconductivity and variation of Tc in the heavy-fermion system CeCu2Si2, J. Magn. Magn. Mater. 31–34, 373 (1983)CrossRefGoogle Scholar
  5. 5.
    J. Arndt, O. Stockert, K. Schmalzl, E. Faulhaber, H. S. Jeevan, C. Geibel, W. Schmidt, M. Loewenhaupt, and F. Steglich, Spin fluctuations in normal state CeCu2Si2 on approaching the quantum critical point, Phys. Rev. Lett. 106(24), 246401 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    K. Ueda, Y. Kitaoka, H. Yamada, Y. Kohori, T. Kohara, and K. Asayama, 29Si knight shift in the heavy-fermion superconductor CeCu2Si2, J. Phys. Soc. Jpn. 56(3), 867 (1987)ADSCrossRefGoogle Scholar
  7. 7.
    Y. Kitaoka, K. Ueda, K. Fujiwara, H. Arimoto, H. Iida, and K. Asayama, NMR investigation of superconductivity and Kondo-coherency in CeCu2Si2, J. Phys. Soc. Jpn. 55(3), 723 (1986)ADSCrossRefGoogle Scholar
  8. 8.
    K. Fujiwara, Y. Hata, K. Kobayashi, K. Miyoshi, J. Takeuchi, Y. Shimaoka, H. Kotegawa, T. C. Kobayashi, C. Geibel, and F. Steglich, High pressure NQR measurement in CeCu2Si2 up to sudden disappearance of superconductivity, J. Phys. Soc. Jpn. 77(12), 123711 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    O. Stockert, J. Arndt, E. Faulhaber, C. Geibel, H. S. Jeevan, S. Kirchner, M. Loewenhaupt, K. Schmalzl, W. Schmidt, Q. Si, and F. Steglich, Magnetically driven superconductivity in CeCu2Si2, Nat. Phys. 7(2), 119 (2011)CrossRefGoogle Scholar
  10. 10.
    H. A. Vieyra, N. Oeschler, S. Seiro, H. S. Jeevan, C. Geibel, D. Parker, and F. Steglich, Determination of gap symmetry from angle-dependent Hc2 measurements on CeCu2Si2, Phys. Rev. Lett. 106(20), 207001 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    I. Eremin, G. Zwicknagl, P. Thalmeier, and P. Fulde, Feedback spin resonance in superconducting CeCu2Si2 and CeCoIn5, Phys. Rev. Lett. 101(18), 187001 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    S. Kittaka, Y. Aoki, Y. Shimura, T. Sakakibara, S. Seiro, C. Geibel, F. Steglich, H. Ikeda, and K. Machida, Multiband superconductivity with unexpected deficiency of nodal quasiparticles in CeCu2Si2, Phys. Rev. Lett. 112(6), 067002 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    S. Kittaka, Y. Aoki, Y. Shimura, T. Sakakibara, S. Seiro, C. Geibel, F. Steglich, Y. Tsutsumi, H. Ikeda, and K. Machida, Thermodynamic study of gap structure and pair-breaking effect by magnetic field in the heavyfermion superconductor CeCu2Si2, Phys. Rev. B 94(5), 054514 (2016)ADSCrossRefGoogle Scholar
  14. 14.
    M. Enayat, Z. Sun, A. Maldonado, H. Suderow, S. Seiro, C. Geibel, S. Wirth, F. Steglich, and P. Wahl, Superconducting gap and vortex lattice of the heavy-fermion compound CeCu2Si2, Phys. Rev. B 93(4), 045123 (2016)ADSCrossRefGoogle Scholar
  15. 15.
    G. M. Pang, M. Smidman, J. L. Zhang, L. Jiao, Z. F. Weng, E. M. Nica, Y. Chen, W. B. Jiang, Y. J. Zhang, H. S. Jeevan, P. Gegenwart, F. Steglich, Q. Si, and H. Q. Yuan, Fully gapped d-wave superconductivity in CeCu2Si2, Proc. Nat. Acad. Sci. 115, 5343 (2018), arXiv: 1605.04786ADSCrossRefGoogle Scholar
  16. 16.
    T. Takenaka, Y. Mizukami, J. A. Wilcox, M. Konczykowski, S. Seiro, C. Geibel, Y. Tokiwa, Y. Kasahara, C. Putzke, Y. Matsuda, A. Carrington, and T. Shibauchi, Full-gap superconductivity robust against disorder in heavy-fermion CeCu2Si2, Phys. Rev. Lett. 119(7), 077001 (2017)ADSCrossRefGoogle Scholar
  17. 17.
    Y. Li, M. Liu, Z. Fu, X. Chen, F. Yang, and Y. F. Yang, Gap symmetry of the heavy fermion superconductor CeCu2Si2 at ambient pressure, Phys. Rev. Lett. 120(21), 217001 (2018)ADSCrossRefGoogle Scholar
  18. 18.
    H. Ikeda, M. Suzuki, and R. Arita, Emergent loop-nodal s-wave superconductivity in CeCu2Si2: Similarities to the iron-based superconductors, Phys. Rev. Lett. 114(14), 147003 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    Ø. Fischer, M. Kugler, I. Maggio-Aprile, C. Berthod, and C. Renner, Scanning tunneling spectroscopy of hightemperature superconductors, Rev. Mod. Phys. 79(1), 353 (2007)ADSCrossRefGoogle Scholar
  20. 20.
    G. Knebel, D. Aoki, and J. Flouquet, Antiferromagnetism and superconductivity in cerium based heavy-fermion compounds, C. R. Phys. 12(5–6), 542 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    G. Stewart, Non-Fermi-liquid behavior in d- and felectron metals, Rev. Mod. Phys. 73(4), 797 (2001)ADSCrossRefGoogle Scholar
  22. 22.
    G. R. Stewart, Heavy-fermion systems, Rev. Mod. Phys. 56(4), 755 (1984)ADSCrossRefGoogle Scholar
  23. 23.
    P. Aynajian, E. H. da Silva Neto, A. Gyenis, R. E. Baumbach, J. D. Thompson, Z. Fisk, E. D. Bauer, and A. Yazdani, Visualizing heavy fermions emerging in a quantum critical Kondo lattice, Nature 486(7402), 201 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    M. P. Allan, F. Massee, D. K. Morr, J. van Dyke, A. W. Rost, A. P. Mackenzie, C. Petrovic, and J. C. Davis, Imaging Cooper pairing of heavy fermions in CeCoIn5, Nat. Phys. 9(8), 468 (2013)CrossRefGoogle Scholar
  25. 25.
    B. B. Zhou, S. Misra, E. H. da Silva Neto, P. Aynajian, R. E. Baumbach, J. D. Thompson, E. D. Bauer, and A. Yazdani, Visualizing nodal heavy fermion superconductivity in CeCoIn5, Nat. Phys. 9(8), 474 (2013)CrossRefGoogle Scholar
  26. 26.
    B. Liu, Nonmagnetic impurity resonance states as a test of superconducting pairing symmetry in CeCoIn5, Phys. Rev. B 88(24), 245127 (2013)ADSCrossRefGoogle Scholar
  27. 27.
    G. Zhang, B. Liu, Y. Yang, and S. Feng, Spatial modulation of unitary impurity-induced resonances in superconducting CeCoIn5, Front. Phys. 11(3), 117402 (2016)CrossRefGoogle Scholar
  28. 28.
    G. Zwicknagl and U. Pulst, CeCu2Si2: Renormalized band structure, quasiparticles and co-operative phenomena, Physica B 186–188, 895 (1993)CrossRefGoogle Scholar
  29. 29.
    A. V. Balatsky, I. Vekhter, and J. X. Zhu, Impurityinduced states in conventional and unconventional superconductors, Rev. Mod. Phys. 78(2), 373 (2006)ADSCrossRefGoogle Scholar
  30. 30.
    S. H. Pan, E. W. Hudson, K. M. Lang, H. Eisaki, S. Uchida, and J. C. Davis, Imaging the effects of individual zinc impurity atoms on superconductivity in Bi2Sr2CaCu2O8+d, Nature 403(6771), 746 (2000)ADSCrossRefGoogle Scholar
  31. 31.
    S. H. Pan, J. P. O’Neal, R. L. Badzey, C. Chamon, H. Ding, J. R. Engelbrecht, Z. Wang, H. Eisaki, S. Uchida, A. K. Gupta, K. W. Ng, E. W. Hudson, K. M. Lang, and J. C. Davis, Microscopic electronic inhomogeneity in the high-T c superconductor Bi2Sr2CaCu2O8+x, Nature 413(6853), 282 (2001)ADSCrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsBeijing Jiaotong UniversityBeijingChina
  2. 2.Beijing National Laboratory for Condensed Matter Physics and Institute of PhysicsChinese Academy of SciencesBeijingChina
  3. 3.University of Chinese Academy of SciencesBeijingChina
  4. 4.Collaborative Innovation Center of Quantum MatterBeijingChina
  5. 5.Department of PhysicsBeijing Normal UniversityBeijingChina

Personalised recommendations