Advertisement

Frontiers of Physics

, 13:137503 | Cite as

Enhancing the magnetoelectric coupling of Co4Nb2O9[100] by substituting Mg for Co

  • Zhen Li
  • Yi-Ming Cao
  • Yin Wang
  • Ya Yang
  • Mao-Lin Xiang
  • You-Shuang Yu
  • Bao-Juan Kang
  • Jin-Cang Zhang
  • Shi-Xun Cao
Research Article

Abstract

We report experimental studies on enhancing the magnetoelectric (ME) coupling of Co4Nb2O9 by substituting the non-magnetic metal Mg for Co. A series of single crystal Co4–xMgxNb2O9 (x = 0, 1, 2, 3) with a single-phase corundum-type structure are synthesized using the optical floating zone method, and the good quality and crystallographic orientations of the synthesized samples are confirmed by the Laue spots and sharp XRD peaks. Although the Néel temperatures (TN) of the Mg substituted crystals decrease slightly from 27 K for pure Co4Nb2O9 to 19 K and 11 K for Co3MgNb2O9 and Co2Mg2Nb2O9, respectively, the ME coupling is doubly enhanced by Mg substitution when x = 1. The ME coefficient αME of Co3MgNb2O9 required for the magnetic field (electric field) control of electric polarization (magnetization) is measured to be 12.8 ps/m (13.7 ps/m). These results indicate that the Mg substituted Co4–xMgxNb2O9 (x = 1) could serve as a potential candidate material for applications in future logic spintronics and logic devices.

Keywords

single crystal magnetoelectric coupling substitution 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11774217 and 11574194) and the Project for Applied Basic Research Programs of Yunnan Province (No. 2017FD142).

References

  1. 1.
    S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. V. Molnár, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, Spintronics: A spin-based electronics vision for the future, Science 294(5546), 1488 (2001)ADSCrossRefGoogle Scholar
  2. 2.
    A. Rycerz, J. Tworzydlo, and C. W. J. Beenakker, Valley filter and valley valve in graphene, Nat. Phys. 3(3), 172 (2007)CrossRefGoogle Scholar
  3. 3.
    W. Eerenstein, N. D. Mathur, and J. F. Scott, Multiferroic and magnetoelectric materials, Nature 442(7104), 759 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    T. H. O'Dell, The electrodynamics of magneto-electric media, Philos. Mag. 7(82), 1653 (1970)ADSCrossRefGoogle Scholar
  5. 5.
    F. Manfred, Revival of the magnetoelectric effect, J. Cheminform. 36(33), R123 (2015)Google Scholar
  6. 6.
    S. W. Cheong and M. Mostovoy, Multiferroics: a magnetic twist for ferroelectricity, Nat. Mater. 6(1), 13 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    M. Tokunaga, Studies on multiferroic materials in high magnetic fields, Front. Phys. 7(4), 386 (2012)CrossRefGoogle Scholar
  8. 8.
    Y. Kitagawa, Y. Hiraoka, T. Honda, T. Ishikura, H. Nakamura, and T. Kimura, Low-field magnetoelectric effect at room temperature, Nat. Mater. 9(10), 797 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    S. Zhang, J. M. Dong, and J. M. Liu, Ferroelectricity generated by spin-orbit and spin-lattice couplings in multiferroic DyMnO3, Front. Phys. 7(4), 408 (2012)CrossRefGoogle Scholar
  10. 10.
    G. Zhang, S. Dong, Z. Yan, Y. Guo, Q. Zhang, S. Yunoki, E. Dagotto, and J. M. Liu, Multiferroic Properties of CaMn7O12, Phys. Rev. B 84(17), 174413 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    T. Kimura, Y. Sekio, H. Nakamura, T. Siegrist, and A. P. Ramirez, Cupric oxide as an induced-multiferroic with high-Tc, Nat. Mater. 7(4), 291 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    Y. Tokunaga, N. Furukawa, H. Sakai, Y. Taguchi, T. H. Arima, and Y. Tokura, Composite domain walls in a multiferroic perovskite ferrite, Nat. Mater. 8(7), 558 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    Y. Yamaguchi, T. Nakano, Y. Nozue, and T. Kimura, Magnetoelectric effect in an XY-like spin glass system NixMn1–xTiO3, Phys. Rev. Lett. 108(5), 057203 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    E. F. Bertaut, L. Corliss, F. Forrat, R. Aleonard, and R. Pauthenet, Etude de niobates et tantalates de metaux de transition bivalents, J. Phys. Chem. Solids 21(3–4), 234 (1961)ADSCrossRefGoogle Scholar
  15. 15.
    E. Fischer, G. Gorodetsky, and R. M. Hornreich, A new family of magnetoelectric materials, A2M4O9 (A = Ta, Nb; M = Mn, Co), Solid State Commun. 10(12), 1127 (1972)ADSCrossRefGoogle Scholar
  16. 16.
    Y. Fang, S. Yan, L. Zhang, Z. Han, B. Qian, D. Wang, Y. Du, and B. Raveau, Magnetic-field-induced dielectric anomaly and electric polarization in Co4Ta2O9, J. Am. Ceram. Soc. 98(7), 2005 (2015)CrossRefGoogle Scholar
  17. 17.
    Y. Fang, W. P. Zhou, S. M. Yan, R. Bai, Z. H. Qian, Q. Y. Xu, D. H. Wang, and Y. W. Du, Magnetic-fieldinduced dielectric anomaly and electric polarization in Mn4Nb2O9, J. Appl. Phys. 117, 17B712 (2015)CrossRefGoogle Scholar
  18. 18.
    B. B. Liu, Y. Fang, Z. D. Han, S. M. Yan, W. P. Zhou, B. Qian, D. H. Wang, and Y. W. Du, Magnetodielectric and magnetoelectric effect in Mn4Nb2O9, Mater. Lett. 164, 425 (2016)CrossRefGoogle Scholar
  19. 19.
    Y. Cao, M. Xiang, Z. J. Feng, B. J. Kang, J. C. Zhang, N. Guiblin, and S. X. Cao, Single crystal growth of Mn4Nb2O9 and its structure-magnetic coupling, Rsc Adv 7(23), 13846 (2017)CrossRefGoogle Scholar
  20. 20.
    Y. Fang, Y. Q. Song, W. P. Zhou, R. Zhao, R. J. Tang, H. Yang, L. Y. Lv, S. G. Yang, D. H. Wang, and Y. W. Du, Large magnetoelectric coupling in Co4Nb2O9, Sci. Rep. 4(1), 3860 (2015)CrossRefGoogle Scholar
  21. 21.
    L. H. Yin, Y. M. Zou, J. Yang, J. M. Dai, W. H. Song, X. B. Zhu, and Y. P. Sun, Colossal magnetodielectric effect and spin flop in magnetoelectric Co4Nb2O9 crystal, Appl. Phys. Lett. 109(3), 032905 (2016)ADSCrossRefGoogle Scholar
  22. 22.
    N. D. Khanh, N. Abe, H. Sagayama, A. Nakao, T. Hanashima, R. Kiyanagi, Y. Tokunaga, and T. Arima, Magnetoelectric coupling in the honeycomb antiferromagnet Co4Nb2O9, Phys. Rev. B 93(7), 075117 (2016)ADSCrossRefGoogle Scholar
  23. 23.
    Y. Cao, G. C. Deng, P. Beran, Z. Feng, B. J. Kang, J. C. Zhang, N. Guiblin, B. Dkhil, W. Ren, and S. X. Cao, Nonlinear magnetoelectric effect in paraelectric state of Co4Nb2O9 single crystal, Sci. Rep. 7(1), 14079 (2017)ADSCrossRefGoogle Scholar
  24. 24.
    C. Dhanasekhar, S. K. Mishra, R. Rawat, A. K. Das, and A. Venimadhav, Coexistence of weak ferromagnetism with magnetoelectric coupling in Fe substituted Co4Nb2O9, J. Alloys Compd. 726, 148 (2017)CrossRefGoogle Scholar
  25. 25.
    G. C. Deng, Y. M. Cao, W. Ren, S. X. Cao, A. J. Studer, N. Gauthier, M. Kenzelmann, G. Davidson, K. C. Rule, J. S. Gardner, P. Imperia, C. Ulrich, and G. J. McIntyre, Spin dynamics and magnetoelectric coupling mechanism of Co4Nb2O9, Phys. Rev. B 97(8), 085154 (2018)ADSCrossRefGoogle Scholar
  26. 26.
    H. M. Rietveld, Line profiles of neutron powderdiffraction peaks for structure refinement, Acta Crystallogr. A 22(1), 151 (1967)CrossRefGoogle Scholar
  27. 27.
    J. Rodríguez-Carvajal, Recent advances in magnetic structure determination by neutron powder diffraction, Physica B 192(1–2), 55 (1993)ADSCrossRefGoogle Scholar
  28. 28.
    The lattice constants of CMNO with different Mg concentrations at room temperature are measured to be a = b = 5:1667(4), 5.1678(4), and 5.1663(9) Å, c = 14:0853(9), 14.0967(9), and 14.0568(5) Å for x = 1, 2, and 3, respectively.Google Scholar
  29. 29.
    Private communications.Google Scholar
  30. 30.
    Y. M. Cao, Y. Yang, M. L. Xiang, Z. Feng, B. J. Kang, J. C. Zhang, W. Ren, and S. X. Cao, High-quality single crystal growth and spin flop of multiferroic Co4Nb2O9, J. Cryst. Growth 420, 90 (2015)ADSCrossRefGoogle Scholar
  31. 31.
    A. Iyama and T. Kimura, Magnetoelectric hysteresis loops in Cr2O3 at room temperature, Phys. Rev. B 87(18), 180408 (2013)ADSCrossRefGoogle Scholar
  32. 32.
    N. Mufti, G. R. Blake, M. Mostovoy, S. Riyadi, A. A. Nugroho, and T. T. M. Palstra, Magnetoelectric coupling in MnTiO3, Phys. Rev. B 83(10), 104416 (2011)ADSCrossRefGoogle Scholar
  33. 33.
    J. Hwang, E. S. Choi, H. D. Zhou, J. Lu, and P. Schlottmann, Magnetoelectric effect in NdCrTiO5, Phys. Rev. B 85(2), 024415 (2012)ADSCrossRefGoogle Scholar
  34. 34.
    J. N. Zhuang, Y. Wang, Y. Zhou, J. Wang, and H. Guo, Impurity-limited quantum transport variability in magnetic tunnel junctions, Front. Phys. 12(4), 127304 (2017)CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Zhen Li
    • 1
  • Yi-Ming Cao
    • 2
  • Yin Wang
    • 1
  • Ya Yang
    • 3
  • Mao-Lin Xiang
    • 1
  • You-Shuang Yu
    • 1
  • Bao-Juan Kang
    • 1
  • Jin-Cang Zhang
    • 1
  • Shi-Xun Cao
    • 1
  1. 1.Department of Physics, International Center for Quantum and Molecular Structures and Materials Genome InstituteShanghai UniversityShanghaiChina
  2. 2.Center for Magnetic Materials, Devices & Key Laboratory for Advanced Functional and Low Dimensional Materials of Yunnan Higher Education InstituteQujing Normal UniversityQujingChina
  3. 3.School of Physics and Electronic EngineeringXinyang Normal UniversityXinyangChina

Personalised recommendations