Abstract
In general, heavy elements contribute only to acoustic phonon modes, which are less important for the superconductivity of hydrides. However, it was revealed that the heavier elements could enhance the phonon-mediated superconductivity in ternary hydrides. In the H3S–Xe system, a novel H3SXe compound was discovered by first-principle calculations. The structural phase transitions of H3SXe under high pressures were studied. The R-3m phase of H3SXe was predicted to appear at pressures above 80 GPa, which transitions to C2/m, P-3m1, and Pm-3m phases at pressures of 90, 160, and 220 GPa, respectively. It has been anticipated that the Pm-3m-H3SXe phase with a similar structural feature as that of Im-3m-H3S is a potential high-temperature superconductor with a Tc of 89 K at 240 GPa. The Tc value of H3SXe is lower than that of H3S at high pressure. The “H3S” host lattice of Pm-3m-H3SXe is a crucial factor influencing the Tc value. The Xe atoms could accelerate the hydrogen-bond symmetrization. With the increase of the atomic number, the Tc value linearly increases in the H3S–noble-gas-element system. This indicates that the superconductivity can be modulated by changing the relative atomic mass of the noble-gas element.
Similar content being viewed by others
References
I. I. Mazin, Superconductivity: Extraordinarily conventional, Nature 525(7567), 40 (2015)
I. Božović, A conventional conundrum, Nat. Phys. 12(1), 22 (2016)
A. P. Drozdov, M. I. Eremets, I. A. Troyan, V. Ksenofontov, and S. I. Shylin, Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system, Nature 525(7567), 73 (2015)
M. Einaga, M. Sakata, T. Ishikawa, K. Shimizu, M. I. Eremets, A. P. Drozdov, I. A. Troyan, N. Hirao, and Y. Ohishi, Crystal structure of the superconducting phase of sulfur hydride, Nat. Phys. 12(9), 835 (2016)
D. Duan, Y. Liu, F. Tian, D. Li, X. Huang, Z. Zhao, H. Yu, B. Liu, W. Tian, and T. Cui, Pressure-induced metallization of dense (H2S)2H2 with high-T c superconductivity, Sci. Rep. 4(1), 6968 (2015)
L. Ortenzi, E. Cappelluti, and L. Pietronero, Band structure and electron-phonon coupling in H3S: A tightbinding model, Phys. Rev. B 94(6), 064507 (2016)
D. A. Papaconstantopoulos, B. M. Klein, M. J. Mehl, and W. E. Pickett, Cubic H3S around 200 GPa: An atomic hydrogen superconductor stabilized by sulfur, Phys. Rev. B 91(18), 184511 (2015)
N. Bernstein, C. S. Hellberg, M. D. Johannes, I. I. Mazin, and M. J. Mehl, What superconducts in sulfur hydrides under pressure and why, Phys. Rev. B 91(6), 060511 (2015)
A. Bianconi and T. Jarlborg, Superconductivity above the lowest Earth temperature in pressurized sulfur hydride, EPL 112(3), 37001 (2015)
Y. Quan and W. E. Pickett, Van Hove singularities and spectral smearing in high-temperature superconducting H3S, Phys. Rev. B 93(10), 104526 (2016)
A. F. Goncharov, S. S. Lobanov, I. Kruglov, X. M. Zhao, X. J. Chen, A. R. Oganov, Z. Konôpková, and V. B. Prakapenka, Hydrogen sulfide at high pressure: Change in stoichiometry, Phys. Rev. B 93(17), 174105 (2016)
Y. Yuan, Y. Feng, L. Bian, D. B. Zhang, and X. Z. Li, The quantum nature of the superconducting hydrogen sulfide at finite temperatures, arXiv: 1607.02348 [condmat] (2016)
A. P. Durajski, Quantitative analysis of nonadiabatic effects in dense H3S and PH3 superconductors, Sci. Rep. 6(1), 38570 (2016)
H. Wang, X. Li, G. Gao, Y. Li, and Y. Ma, Hydrogenrich superconductors at high pressures, Wiley Interdiscip. Rev. Comput. Mol. Sci. 8(1), e1330 (2018)
Y. Yao and S. Tse John, Superconducting hydrogen sulfide, Chemistry 24(8), 1769 (2017)
R. Szczesniak and A. P. Durajski, The isotope effect in H3S superconductor, Solid State Commun. 249, 30 (2017)
A. P. Durajski and R. Szczęśniak, First-principles study of superconducting hydrogen sulfide at pressure up to 500 GPa, Sci. Rep. 7(1), 4473 (2017)
S. Azadi and T. D. Kühne, High-pressure hydrogen sulfide by diffusion quantum Monte Carlo, J. Chem. Phys. 146(8), 084503 (2017)
R. Akashi, M. Kawamura, S. Tsuneyuki, Y. Nomura, and R. Arita, First-principles study of the pressure and crystal-structure dependences of the superconducting transition temperature in compressed sulfur hydrides, Phys. Rev. B 91(22), 224513 (2015)
I. Errea, M. Calandra, C. J. Pickard, J. Nelson, R. J. Needs, Y. Li, H. Liu, Y. Zhang, Y. Ma, and F. Mauri, High-pressure hydrogen sulfide from first principles: A strongly anharmonic phonon-mediated superconductor, Phys. Rev. Lett. 114(15), 157004 (2015)
C. Heil and L. Boeri, Influence of bonding on superconductivity in high-pressure hydrides, Phys. Rev. B 92(6), 060508 (2015)
Y. Ge, F. Zhang, and Y. Yao, First-principles demonstration of superconductivity at 280 K in hydrogen sulfide with low phosphorus substitution, Phys. Rev. B 93(22), 224513 (2016)
M. Komelj and H. Krakauer, Electron-phonon coupling and exchange-correlation effects in superconducting H3S under high pressure, Phys. Rev. B 92(20), 205125 (2015)
E. J. Nicol and J. P. Carbotte, Comparison of pressurized sulfur hydride with conventional superconductors, Phys. Rev. B 91(22), 220507 (2015)
A. F. Goncharov, S. S. Lobanov, V. B. Prakapenka, and E. Greenberg, Stable high-pressure phases in the H-S system determined by chemically reacting hydrogen and sulfur, Phys. Rev. B 95(14), 140101 (2017)
B. Guigue, A. Marizy, and P. Loubeyre, Direct synthesis of pure H3S from S and H elements: No evidence of the cubic superconducting phase up to 160 GPa, Phys. Rev. B 95(2), 020104 (2017)
H. Wang, J. S. Tse, K. Tanaka, T. Iitaka, and Y. Ma, Superconductive sodalite-like clathrate calcium hydride at high pressures, Proc. Natl. Acad. Sci. USA 109(17), 6463 (2012)
Y. Li, L. Wang, H. Liu, Y. Zhang, J. Hao, C. J. Pickard, J. R. Nelson, R. J. Needs, W. Li, Y. Huang, I. Errea, M. Calandra, F. Mauri, and Y. Ma, Dissociation products and structures of solid H2S at strong compression, Phys. Rev. B 93(2), 020103 (2016)
T. Ishikawa, A. Nakanishi, K. Shimizu, H. Katayama- Yoshida, T. Oda, and N. Suzuki, Superconducting H5S2 phase in sulfur-hydrogen system under high-pressure, Sci. Rep. 6(1), 23160 (2016)
A. P. Drozdov, M. I. Eremets, and I. A. Troyan, Superconductivity above 100 K in PH3 at high pressures, arXiv: 1508.06224 [cond-mat] (2015)
H. Oh, S. Coh, and M. L. Cohen, Comparative study of high-Tc superconductivity in H3S and H3P, arXiv: 1606.09477 [cond-mat] (2016)
A. Shamp, T. Terpstra, T. Bi, Z. Falls, P. Avery, and E. Zurek, Decomposition Products of Phosphine Under Pressure: PH2 Stable and Superconducting? J. Am. Chem. Soc. 138(6), 1884 (2016)
S. Zhang, Y. Wang, J. Zhang, H. Liu, X. Zhong, H. F. Song, G. Yang, L. Zhang, and Y. Ma, Phase Diagram and high-temperature superconductivity of compressed selenium hydrides, Sci. Rep. 5(1), 15433 (2015)
X. Zhong, H. Wang, J. Zhang, H. Liu, S. Zhang, H. F. Song, G. Yang, L. Zhang, and Y. Ma, Tellurium hydrides at high pressures: High-temperature superconductors, Phys. Rev. Lett. 116(5), 057002 (2016)
K. Abe and N. W. Ashcroft, Stabilization and highly metallic properties of heavy group-V hydrides at high pressures, Phys. Rev. B 92(22), 224109 (2015)
Y. Fu, et al., Chem. Mater. (2016)
Y. Ma, et al., The unexpected binding and superconductivity in SbH4 at high pressure, arXiv: 1506.03889 [cond-mat] (2015)
Y. Wang, H. Wang, J. S. Tse, T. Iitaka, and Y. Ma, Structural morphologies of high-pressure polymorphs of strontium hydrides, Phys. Chem. Chem. Phys. 17, 19379 (2015)
Y. Li, J. Hao, H. Liu, J. S. Tse, Y. Wang, and Y. Ma, Pressure-stabilized superconductive yttrium hydrides, Sci. Rep. 5(1), 9948 (2015)
M. M. D. Esfahani, Z. Wang, A. R. Oganov, H. Dong, Q. Zhu, S. Wang, M. S. Rakitin, and X. F. Zhou, Superconductivity of novel tin hydrides (SnnHm) under pressure, Sci. Rep. 6(1), 22873 (2016)
H. Liu, I. I. Naumov, R. Hoffmann, N. W. Ashcroft, and R. J. Hemley, Potential high-T c superconducting lanthanum and yttrium hydrides at high pressure, Proc. Natl. Acad. Sci. USA 114, 6990 (2017)
I. A. Kruglov, et al., Uranium polyhydrides at moderate pressures: Prediction, synthesis, and expected superconductivity, arXiv: 1708.05251 [cond-mat] (2017)
M. Rahm, R. Hoffmann, and N. W. Ashcroft, Ternary gold hydrides: Routes to stable and potentially superconducting compounds, J. Am. Chem. Soc. 139(25), 8740 (2017)
S. Zhang, L. Zhu, H. Liu, and G. Yang, Structure and electronic properties of Fe2SH3 compound under high pressure, Inorg. Chem. 55(21), 11434 (2016)
T. Muramatsu, W. K. Wanene, M. Somayazulu, E. Vinitsky, D. Chandra, T. A. Strobel, V. V. Struzhkin, and R. J. Hemley, Metallization and superconductivity in the hydrogen-rich ionic salt BaReH9, J. Phys. Chem. C 119(32), 18007 (2015)
Y. Ma, D. Duan, Z. Shao, H. Yu, H. Liu, F. Tian, X. Huang, D. Li, B. Liu, and T. Cui, Divergent synthesis routes and superconductivity of ternary hydride MgSiH6 at high pressure, Phys. Rev. B 96(14), 144518 (2017)
Y. Ma, D. Duan, Z. Shao, D. Li, L. Wang, H. Yu, F. Tian, H. Xie, B. Liu, and T. Cui, Prediction of superconducting ternary hydride MgGeH6: From divergent highpressure formation routes, Phys. Chem. Chem. Phys. 19(40), 27406 (2017)
W. Kohn and L. J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. 140(4A), A1133 (1965)
P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Phys. Rev. 136(3B), B864 (1964)
G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59(3), 1758 (1999)
G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)
P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50(24), 17953 (1994)
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
A. Togo, F. Oba, and I. Tanaka, First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures, Phys. Rev. B 78(13), 134106 (2008)
P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, et al., QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials, J. Phys.: Condens. Matter 21(39), 395502 (2009)
Y. Wang, J. Lv, L. Zhu, and Y. Ma, CALYPSO: A method for crystal structure prediction, Comput. Phys. Commun. 183(10), 2063 (2012)
Y. Wang, J. Lv, L. Zhu, and Y. Ma, Crystal structure prediction via particle-swarm optimization, Phys. Rev. B 82(9), 094116 (2010)
Y. Yao and J. S. Tse, Electron-phonon coupling in the high-pressure hcp phase of xenon: A first-principles study, Phys. Rev. B 75(13), 134104 (2007)
Acknowledgements
This work was supported by the National Natural Science Foundation of China (Grant Nos. 11404134, 91745203, 51572108, 11634004, 11574109, and 11674122), Program for Changjiang Scholars and Innovative Research Team in University (No. IRT 15R23), National Fund for Fostering Talents of Basic Science (No. J1103202), Jilin Provincial Science and Technology Development Project of China (Grant Nos. 20160520016JH and 20170520116JH) and China Postdoctoral Science Foundation (Grant Nos. 2014M561279 and 2016T90246). Parts of calculations were performed in the High Performance Computing Center (HPCC) of Jilin University.
Author information
Authors and Affiliations
Corresponding author
Additional information
Dedicated to Prof. Guangtian Zou on the occasion of his 80th birthday.
Rights and permissions
About this article
Cite this article
Li, D., Liu, Y., Tian, FB. et al. Pressure-induced superconducting ternary hydride H3SXe: A theoretical investigation. Front. Phys. 13, 137107 (2018). https://doi.org/10.1007/s11467-018-0818-7
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11467-018-0818-7