Skip to main content
Log in

A critical path approach for elucidating the temperature dependence of granular hopping conduction

  • Research article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

We revisit the classical problem of granular hopping conduction’s σ ∝ exp[-(To/T)1/2] temperature dependence, where σ denotes conductivity, T is temperature, and To is a sample-dependent constant. By using the hopping conduction formulation in conjunction with the incorporation of the random potential that has been shown to exist in insulator-conductor composites, it is demonstrated that the widely observed temperature dependence of granular hopping conduction emerges very naturally through the immediate-neighbor critical-path argument. Here, immediate-neighbor pairs are defined to be those where a line connecting two grains does not cross or by-pass other grains, and the critical-path argument denotes the derivation of sample conductance based on the geometric percolation condition that is marked by the critical conduction path in a random granular composite. Simulations based on the exact electrical network evaluation of finite-sample conductance show that the configurationaveraged results agree well with those obtained using the immediate-neighbor critical-path method. Furthermore, the results obtained using both these methods show good agreement with experimental data on hopping conduction in a sputtered metal-insulator composite Agx(SnO2)1-x, where x denotes the metal volume fraction. The present approach offers a relatively straightforward and simple explanation for the temperature behavior that has been widely observed over diverse material systems, but which has remained a puzzle in spite of the various efforts made to explain this phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Abeles, P. Sheng, M. D. Coutts, and Y. Arie, Structural and electrical properties of granular metal films, Adv. Phys. 24(3): 407 (1975)

    Article  ADS  Google Scholar 

  2. C. J. Adkins, Conduction in granular metals–variablerange hopping in a Coulomb gap? J. Phys.: Condens. Matter 1(7): 1253 (1989)

    ADS  Google Scholar 

  3. P. Sheng, B. Abeles, and Y. Arie, Hopping conductivity in granular metals, Phys. Rev. Lett. 31(1): 44 (1973)

    Article  ADS  Google Scholar 

  4. S. Barzilai, Y. Goldstein, I. Balberg, and J. S. Helman, Magnetic and transport properties of granular cobalt films, Phys. Rev. B 23(4): 1809 (1981)

    Article  ADS  Google Scholar 

  5. S. P. McAlister, A. D. Inglis, and P. M. Kayll, Conduction in cosputtered Au-SiO2 films, Phys. Rev. B 31(8): 5113 (1985)

    Article  ADS  Google Scholar 

  6. S. P. McAlister, A. D. Inglis, and D. R. Kroeker, Crossover between hopping and tunnelling conduction in Au-SiO2 films, J. Phys. C 17(28), L751 (1984)

    Article  ADS  Google Scholar 

  7. H. Bakkali and M. Dominguez, Differential conductance of Pd-ZrO2 thin granular films prepared by RF magnetron sputtering, Europhys. Lett. 104(1): 17007 (2013)

    Article  ADS  Google Scholar 

  8. V. F. Gantmakher, Electrons and Disorder in Solids, Oxford: Clarendon, 2005

    Book  MATH  Google Scholar 

  9. Y. N. Wu, Y. F. Wei, Z. Q. Li, and J. J. Lin, Granular hopping conduction in (Ag, Mo)x(SnO2)1-x films in the dielectric regime, arXiv: 1708.04434 (2017)

    Google Scholar 

  10. N. F. Mott, Conduction in glasses containing transition metal ions, J. Non-crystal. Solids 1(1): 1 (1968)

    Article  MathSciNet  ADS  Google Scholar 

  11. N. F. Mott and E. A. Davis, Electronic Processes in Non-Crystalline Materials, Oxford: Clarendon, 1979

    Google Scholar 

  12. A. L. Efros and B. I. Shklovskii, Coulomb gap and low temperature conductivity of disordered systems, J. Phys. C 8(4), L49 (1975)

    Article  ADS  Google Scholar 

  13. A. L. Efros, Coulomb gap in disordered systems, J. Phys. C 9(11): 2021 (1976)

    Article  ADS  Google Scholar 

  14. B. I. Shklovskii and A. L. Efros, Electronic Properties of Doped Semiconductors, New York: Springer, 1984

    Book  Google Scholar 

  15. A. Miller and E. Abrahams, Impurity conduction at low concentrations, Phys. Rev. 120(3): 745 (1960)

    Article  MATH  ADS  Google Scholar 

  16. V. Ambegaokar, B. I. Halperin, and J. S. Langer, Hopping conductivity in disordered systems, Phys. Rev. B 4(8): 2612 (1971)

    Article  ADS  Google Scholar 

  17. V. K. S. Shante, Variable-range hopping conduction in thin films, Phys. Lett. A 43(3): 249 (1973)

    Article  ADS  Google Scholar 

  18. V. K. S. Shante, Hopping conduction in quasi-onedimensional disordered compounds, Phys. Rev. B 16(6): 2597 (1977)

    Article  ADS  Google Scholar 

  19. C. J. Adkins, Conduction in granular metals with potential disorder, J. Phys. C 20(2): 235 (1987)

    Article  ADS  Google Scholar 

  20. M. Pollak and C. J. Adkins, Conduction in granular metals, Philos. Mag. B 65(4): 855 (1992)

    Article  ADS  Google Scholar 

  21. C. J. Adkins, J. D. Benjamin, J. M. D. Thomas, J. W. Gardner, and A. J. McGeown, Potential disorder in granular metal systems: The field effect in discontinuous metal films, J. Phys. C 17(26): 4633 (1984)

    Article  ADS  Google Scholar 

  22. A. J. McGeown and C. J. Adkins, Thermopower in discontinuous metal films, J. Phys. C 19(11): 1753 (1986)

    Article  ADS  Google Scholar 

  23. R. E. Cavicchi and R. H. Silsbee, Coulomb suppression of tunneling rate from small metal particles, Phys. Rev. Lett. 52(16): 1453 (1984)

    Article  ADS  Google Scholar 

  24. J. W. Gardner and C. J. Adkins, Island charging energies and random potentials in discontinuous metal films, J. Phys. C 18(35): 6523 (1985)

    Article  ADS  Google Scholar 

  25. R. A. Buhrman and C. G. Granqvist, Log-normal size distributions from magnetization measurements on small superconducting Al particles, J. Appl. Phys. 47(5): 2220 (1976)

    Article  ADS  Google Scholar 

  26. J. Zhang and B. I. Shklovskii, Density of states and conductivity of a granular metal or an array of quantum dots, Phys. Rev. B 70(11): 115317 (2004)

    Article  ADS  Google Scholar 

  27. I. S. Beloborodov, A. V. Lopatin, and V. M. Vinokur, Coulomb effects and hopping transport in granular metals, Phys. Rev. B 72(12): 125121 (2005)

    Article  ADS  Google Scholar 

  28. C. H. Lin and G. Y. Wu, Hopping conduction in granular metals, Physica B 279(4): 341 (2000)

    Article  ADS  Google Scholar 

  29. K. B. Efetov and A. Tschersich, Coulomb effects in granular materials at not very low temperatures, Phys. Rev. B 67(A5), 174205 (2003)

    Article  ADS  Google Scholar 

  30. T. Chui, G. Deutscher, P. Lindenfeld, and W. L. McLean, Conduction in granular aluminum near the metal-insulator transition, Phys. Rev. B 23(11), 6172 (1981)

    Article  ADS  Google Scholar 

  31. Y. H. Lin, Y. C. Sun, W. B. Jian, H. M. Chang, Y. S. Huang, and J. J. Lin, Electrical transport studies of individual IrO2 nanorods and their nanorod contacts, Nanotechnology 19(4), 045711 (2008)

    Article  ADS  Google Scholar 

  32. P. Sheng and J. Klafter, Hopping conductivity in granular disordered systems, Phys. Rev. B 27(4), 2583 (1983)

    Article  ADS  Google Scholar 

  33. J. Klafter and P. Sheng, The Coulomb quasigap and the metal-insulator transition in granular systems, J. Phys. C Solid State Phys. 17(3), L93 (1984)

    Article  ADS  Google Scholar 

  34. C. J. Adkins, Hopping and Related Phenomena, Eds. H Fritzsche and M Pollak, Singapore: World Scientific, 1990, pp 93–109

  35. H. Zhang, J. Lu, W. Shi, Z. Wang, T. Zhang, M. Sun, Y. Zheng, Q. Chen, N. Wang, J. J. Lin, and P. Sheng, Large-scale mesoscopic transport in nanostructured graphene, Phys. tRev. Lett. 110(6), 066805 (2013)

    Article  ADS  Google Scholar 

  36. Y. L. Huang, S. P. Chiu, Z. X. Zhu, Z. Q. Li, and J. J. Lin, Variable-range-hopping conduction processes in oxygen deficient polycrystalline ZnO films, J. Appl. Phys. 107(6), 063715 (2010)

    Article  ADS  Google Scholar 

  37. M. V. Feigel’man and A. S. Ioselevich, Variable-range cotunneling and conductivity of a granular metal, JETP Lett. 81(6), 277 (2005)

    Article  ADS  Google Scholar 

  38. C. H. Lin and G. Y. Wu, Percolation calculation with non-nearest neighbor hopping of hopping resistances for granular metals, Thin Solid Films 397(1–2), 280 (2001)

    Article  ADS  Google Scholar 

  39. P. Sheng, Introduction to Wave Scattering, Localization and Mesoscopic Phenomena, Heidelberg: Springer, 2006

    Google Scholar 

  40. G. E. Pike and C. H. Seager, Percolation and conductivity: A computer study (I), Phys. Rev. B 10(4), 1421 (1974)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Sheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, T.C., Lin, JJ. & Sheng, P. A critical path approach for elucidating the temperature dependence of granular hopping conduction. Front. Phys. 13, 137205 (2018). https://doi.org/10.1007/s11467-018-0814-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-018-0814-y

Keywords

Navigation