Skip to main content
Log in

Molecular-scale processes affecting growth rates of ice at moderate supercooling

  • Research article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

The growth kinetics of ice are modeled using the Water Potential from Adaptive Force Matching for Ice and Liquid (WAIL) potential with molecular dynamics. The all-atom WAIL model provides a good description of the properties of both ice and liquid with an equilibrium temperature of 270 K at 1 bar. The growth kinetics captured by this model can thus reflect those of real ice. Our simulation indicates that the growth rate of ice on the basal plane is fastest at approximately 20 K supercooling, consistent with experimental findings, where the growth rate increases monotonically as the supercooling increases to 18 K. The key factors that control the growth kinetics leading to the optimal growth temperature are investigated. The simulation revealed a bilayer-by-bilayer growth mechanism on the basal plane that proceeds in two steps. Whereas water molecules lose translational motion and become ice-like quickly, the establishment of orientational order to form ice is a slow and activated process. Enhanced by the templating effect of sublayers, the rapid reduction in translational motion in the formation of the prefreezing layer might explain the significantly faster growth rate relative to the nucleation rate of water. Whereas remelting of the prefreezing layer is observed at low supercooling and may be responsible for the lower growth rate close to the melting temperature, the slow orientational ordering of the prefreezing layer into the final ice conformation is partly responsible for the reduced growth rate at deeper supercooling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. De Michele, G. Romanelli, and A. Cupane, Dynamics of supercooled confined water measured by deep inelastic neutron scattering, Front. Phys. 13(1), 138205 (2018)

    Article  Google Scholar 

  2. M. De Marzio, G. Camisasca, M. Rovere, and P. Gallo, Fragile to strong crossover and Widom line in supercooled water: A comparative study, Front. Phys. 13(1), 136103 (2018)

    Article  Google Scholar 

  3. E. O. Rizzatti, M. A. A. Barbosa, and M. C. Barbosa, Core-softened potentials, multiple liquid–liquid critical points, and density anomaly regions: An exact solution, Front. Phys. 13(1), 136102 (2018)

    Google Scholar 

  4. F. Mallamace, C. Corsaro, D. Mallamace, Z. Wang, and S. H. Chen, The Boson peak in confined water: An experimental investigation of the liquid-liquid phase transition hypothesis, Front. Phys. 10(5), 106103 (2015)

    Article  Google Scholar 

  5. F. Mallamace, C. Corsaro, D. Mallamace, N. Cicero, S. Vasi, G. Dugo, and H. E. Stanley, Dynamical changes in hydration water accompanying lysozyme thermal denaturation, Front. Phys. 10(5), 106104 (2015)

    Article  Google Scholar 

  6. F. Mallamace, C. Corsaro, D. Mallamace, C. Vasi, N. Cicero, and H. E. Stanley, Water and lysozyme: Some results from the bending and stretching vibrational modes, Front. Phys. 10(5), 106105 (2015)

    Article  Google Scholar 

  7. I. Piazza, A. Cupane, E. L. Barbier, C. Rome, N. Collomb, J. Ollivier, M. A. Gonzalez, and F. Natali, Dynamical properties of water in living cells, Front. Phys. 13(1), 138301 (2018)

    Article  Google Scholar 

  8. D. Mallamace, S. Vasi, M. Missori, F. Mallamace, and C. Corsaro, NMR investigation of degradation processes of ancient and modern paper at different hydration levels, Front. Phys. 13(1), 138202 (2018)

    Article  Google Scholar 

  9. F. Martelli, H. Y. Ko, C. C. Borallo, and G. Franzese, Structural properties of water confined by phospholipid membranes, Front. Phys. 13(1), 136801 (2018)

    Article  Google Scholar 

  10. C. Corsaro, F. Mallamace, S. Vasi, S. H. Chen, H. E. Stanley, and D. Mallamace, Contrasting microscopic interactions determine the properties of water/methanol solutions, Front. Phys. 13(1), 138201 (2018)

    Article  Google Scholar 

  11. A. Parmentier, C. Andreani, G. Romanelli, J. J. Shephard, C. G. Salzmann, and R. Senesi, Hydrogen mean force and anharmonicity in polycrystalline and amorphous ice, Front. Phys. 13(1), 136101 (2018)

    Article  Google Scholar 

  12. H. Shen, M. Chen, Z. Sun, L. Xu, E. Wang, and X. Wu, Signature of the hydrogen-bonded environment of liquid water in X-ray emission spectra from first-principles calculations, Front. Phys. 13(1), 138204 (2018)

    Article  Google Scholar 

  13. A. Gabrieli, M. Sant, S. Izadi, P. S. Shabane, A. V. Onufriev, and G. B. Suffritti, High-temperature dynamic behavior in bulk liquid water: A molecular dynamics simulation study using the OPC and TIP4P-Ew potentials, Front. Phys. 13(1), 138203 (2018)

    Article  Google Scholar 

  14. T. Bartels-Rausch, Ten things we need to know about ice and snow, Nature 494(7435), 27 (2013)

    Article  ADS  Google Scholar 

  15. J. Liang, M. Liu, R. Wang, and Y. Wang, Study on the glaze ice accretion of wind turbine with various chord lengths, IOP Conf. Ser.: Earth Environ. Sci. 121, 042026 (2018)

    Google Scholar 

  16. S. Zhang, J. Huang, Y. Cheng, H. Yang, Z. Chen, and Y. Lai, Bioinspired surfaces with superwettability for antiicing and ice-phobic application: Concept, mechanism, and design, Small 13(48), 1701867 (2017)

    Article  Google Scholar 

  17. J. D. Atkinson, B. J. Murray, M. T. Woodhouse, T. F. Whale, K. J. Baustian, K. S. Carslaw, S. Dobbie, D. O’Sullivan, and T. L. Malkin, The importance of feldspar for ice nucleation by mineral dust in mixedphase clouds, Nature 498(7454), 355 (2013)

    Article  ADS  Google Scholar 

  18. Y. Jin, Z. He, Q. Guo, and J. Wang, Control of ice propagation by using polyelectrolyte multilayer coatings, Angew. Chem. Int. Ed. Engl. 56(38), 11436 (2017)

    Article  Google Scholar 

  19. I. K. Voets, From ice-binding proteins to bio-inspired antifreeze materials, Soft Matter 13(28), 4808 (2017)

    Article  ADS  Google Scholar 

  20. Y. Xu, N. G. Petrik, R. S. Smith, B. D. Kay, and G. A. Kimmel, Homogeneous nucleation of ice in transientlyheated, supercooled liquid water films, J. Phys. Chem. Lett. 8(23), 5736 (2017)

    Article  Google Scholar 

  21. C. A. Knight, A simple technique for growing large, optically “perfect” ice crystals, J. Glaciol. 42(142), 585 (1996)

    Article  ADS  Google Scholar 

  22. A. Shibkov, Y. I. Golovin, M. Zheltov, A. Korolev, and A. Leonov, In situ monitoring of growth of ice from supercooled water by a new electromagnetic method, J. Cryst. Growth 236(1–3), 434 (2002)

    Article  ADS  Google Scholar 

  23. Y. Qiu, N. Odendahl, A. Hudait, R. Mason, A. K. Bertram, F. Paesani, P. J. DeMott, and V. Molinero, Ice nucleation efficiency of hydroxylated organic surfaces is controlled by their structural fluctuations and mismatch to ice, J. Am. Chem. Soc. 139(8), 3052 (2017)

    Article  Google Scholar 

  24. M. Matsumoto, S. Saito, and I. Ohmine, Molecular dynamics simulation of the ice nucleation and growth process leading to water freezing, Nature 416(6879), 409 (2002)

    Article  ADS  Google Scholar 

  25. D. Rozmanov and P. G. Kusalik, Temperature dependence of crystal growth of hexagonal ice (Ih), Phys. Chem. Chem. Phys. 13(34), 15501 (2011)

    Article  Google Scholar 

  26. H. Pruppacher, On the growth of ice crystals in supercooled water and aqueous solution drops, Pure and Applied Geophysics 68(1), 186 (1967)

    Article  ADS  Google Scholar 

  27. J. Hallett, Experimental studies of the crystallization of supercooled water, J. Atmos. Sci. 21(6), 671 (1964)

    Article  ADS  Google Scholar 

  28. N. Fukuta, Experimental studies on the growth of small ice crystals, J. Atmos. Sci. 26(3), 522 (1969)

    Article  ADS  Google Scholar 

  29. D. Rozmanov and P. G. Kusalik, Anisotropy in the crystal growth of hexagonal ice Ih, J. Chem. Phys. 137(9), 094702 (2012)

    Article  ADS  Google Scholar 

  30. A. A. Shibkov, M. A. Zheltov, A. A. Korolev, A. A. Kazakov, and A. A. Leonov, Crossover from diffusionlimited to kinetics-limited growth of ice crystals, J. Cryst. Growth 285(1–2), 215 (2005)

    Article  ADS  Google Scholar 

  31. M. S. Razul and P. G. Kusalik, Crystal growth investigations of icewater interfaces from molecular dynamics simulations: Profile functions and average properties, J. Chem. Phys. 134(1), 014710 (2011)

    Article  ADS  Google Scholar 

  32. E. R. Pinnick, S. Erramilli, and F. Wang, Predicting the melting temperature of ice-Ih with only electronic structure information as input, J. Chem. Phys. 137(1), 014510 (2012)

    Article  ADS  Google Scholar 

  33. M. Fitzner, G. C. Sosso, S. J. Cox, and A. Michaelides, The many faces of heterogeneous ice nucleation: Interplay between surface morphology and hydrophobicity, J. Am. Chem. Soc. 137(42), 13658 (2015)

    Article  Google Scholar 

  34. E. Sanz, C. Vega, J. R. Espinosa, R. Caballero-Bernal, J. L. Abascal, and C. Valeriani, Homogeneous ice nucleation at moderate supercooling from molecular simulation, J. Am. Chem. Soc. 135(40), 15008 (2013)

    Article  Google Scholar 

  35. J. R. Espinosa, E. Sanz, C. Valeriani, and C. Vega, Homogeneous ice nucleation evaluated for several water models, J. Chem. Phys. 141(18), 18529 (2014)

    Article  Google Scholar 

  36. A. Haji-Akbari and P. G. Debenedetti, Direct calculation of ice homogeneous nucleation rate for a molecular model of water, Proc. Natl. Acad. Sci. USA 112(34), 10582 (2015)

    Article  ADS  Google Scholar 

  37. G. E. Lindberg and F. Wang, Efficient sampling of ice structures by electrostatic switching, J. Phys. Chem. B 112(20), 6436 (2008)

    Article  Google Scholar 

  38. D. Van Der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark, and H. J. Berendsen, GROMACS: Fast, flexible, and free, J. Comput. Chem. 26(16), 1701 (2005)

    Article  Google Scholar 

  39. T. L. Malkin, B. J. Murray, A. V. Brukhno, J. Anwar, and C. G. Salzmann, Structure of ice crystallized from supercooled water, Proc. Natl. Acad. Sci. USA 109(4), 1041 (2012)

    Article  ADS  Google Scholar 

  40. K. Morishige and H. Uematsu, The proper structure of cubic ice confined in mesopores, J. Chem. Phys. 122(4), 044711 (2005)

    Article  ADS  Google Scholar 

  41. J. Benet, L. G. MacDowell, and E. Sanz, A study of the ice-water interface using the TIP4P/2005 water model, Phys. Chem. Chem. Phys. 16(40), 22159 (2014)

    Article  Google Scholar 

  42. T. L. Malkin, B. J. Murray, C. G. Salzmann, V. Molinero, S. J. Pickering, and T. F. Whale, Stacking disorder in ice I, Phys. Chem. Chem. Phys. 17(1), 60 (2015)

    Article  Google Scholar 

  43. L. Scott, A primer on ice (in preparation) (2012)

    Google Scholar 

  44. S. Choi, E. Jang, and J. S. Kim, In-layer stacking competition during ice growth, J. Chem. Phys. 140(1), 014701 (2014)

    Article  ADS  Google Scholar 

  45. P. Rein ten Wolde, M. J. Ruiz‐Montero, and D. Frenkel, Numerical calculation of the rate of crystal nucleation in a Lennard-Jones system at moderate undercooling, J. Chem. Phys. 104(24), 9932 (1996)

    Article  ADS  Google Scholar 

  46. E. B. Moore, E. de la Llave, K. Welke, D. A. Scherlis, and V. Molinero, Freezing, melting and structure of ice in a hydrophilic nanopore, Phys. Chem. Chem. Phys. 12(16), 4124 (2010)

    Article  Google Scholar 

  47. A. H. Nguyen and V. Molinero, Identification of clathrate hydrates, hexagonal ice, cubic ice, and liquid water in simulations: The CHILL+ algorithm, J. Phys. Chem. B 119(29), 9369 (2015)

    Article  Google Scholar 

  48. A. Reinhardt, J. P. Doye, E. G. Noya, and C. Vega, Local order parameters for use in driving homogeneous ice nucleation with all-atom models of water, J. Chem. Phys. 137(19), 194504 (2012)

    Article  ADS  Google Scholar 

  49. H. Tanaka, Simple view of waterlike anomalies of atomic liquids with directional bonding, Phys. Rev. B 66(6), 064202 (2002)

    Article  ADS  Google Scholar 

  50. C. A. Angell, R. D. Bressel, M. Hemmati, E. J. Sare, and J. C. Tucker, Water and its anomalies in perspective: Tetrahedral liquids with and without liquid–liquid phase transitions, Phys. Chem. Chem. Phys. 2(8), 1559 (2000)

    Article  Google Scholar 

  51. T. C. Hansen, M. M. Koza, P. Lindner, and W. F. Kuhs, Formation and annealing of cubic ice (II): Kinetic study, J. Phys.: Condens. Matter 20(28), 285105 (2008)

    Google Scholar 

  52. W. F. Kuhs, C. Sippel, A. Falenty, and T. C. Hansen, Extent and relevance of stacking disorder in “ice I(c)”, Proc. Natl. Acad. Sci. USA 109(52), 21259 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Basic Research Program of China under Grant No. 2015CB856801, the National Natural Science Foundation of China under Grant Nos. 11525520 and 11290162/A040106, and the National Key R&D Program under Grant No. 2016YFA0300901. The computer resources for this study were provided by the Arkansas High Performance Computational Center through grant MRI-R2 0959124 provided by the NSF of USA.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li-Mei Xu or Feng Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, R., Xu, LM. & Wang, F. Molecular-scale processes affecting growth rates of ice at moderate supercooling. Front. Phys. 13, 138116 (2018). https://doi.org/10.1007/s11467-018-0808-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-018-0808-9

Keywords

Navigation