Skip to main content
Log in

Geometric field theory and weak Euler–Lagrange equation for classical relativistic particle-field systems

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

A manifestly covariant, or geometric, field theory of relativistic classical particle-field systems is developed. The connection between the space-time symmetry and energy-momentum conservation laws of the system is established geometrically without splitting the space and time coordinates; i.e., space-time is treated as one entity without choosing a coordinate system. To achieve this goal, we need to overcome two difficulties. The first difficulty arises from the fact that the particles and the field reside on different manifolds. As a result, the geometric Lagrangian density of the system is a function of the 4-potential of the electromagnetic fields and also a functional of the particles’ world lines. The other difficulty associated with the geometric setting results from the mass-shell constraint. The standard Euler–Lagrange (EL) equation for a particle is generalized into the geometric EL equation when the mass-shell constraint is imposed. For the particle-field system, the geometric EL equation is further generalized into a weak geometric EL equation for particles. With the EL equation for the field and the geometric weak EL equation for particles, the symmetries and conservation laws can be established geometrically. A geometric expression for the particle energy-momentum tensor is derived for the first time, which recovers the non-geometric form in the literature for a chosen coordinate system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Noether, Invariante Variationsprobleme, Nachr. König. Gesell. Wiss. Göttingen, Math.-Phys. Kl. 235–257 (1918); also available in English at Transport Theory Statist. Phys. 1, 186–207 (1971)

    Article  Google Scholar 

  2. P. J. Olver, Applications of Lie Groups to Differential Equations, New York: Springer-Verlag, 1993, pp 242–283

    Google Scholar 

  3. C. Markakis, K. Uryū, E. Gourgoulhon, J. P. Nicolas, N. Andersson, A. Pouri, and V. Witzany, Conservation laws and evolution schemes in geodesic, hydrodynamic, and magnetohydrodynamic flows, Phys. Rev. D 96(6), 064019 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  4. R. M. Wald, General Relativity, Chicago and London: The University of Chicago Press, 1984, pp 23–27

    Book  Google Scholar 

  5. H. Qin, R. H. Cohen, W. M. Nevins, and X. Q. Xu, Geometric gyrokinetic theory for edge plasmas, Phys. Plasmas 14(5), 056110 (2007)

    Article  ADS  Google Scholar 

  6. L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields, Oxford: Butterworth-Heinemann, 1975, pp 46–89

    Google Scholar 

  7. T. D. Brennan and S. E. Gralla, On the magnetosphere of an accelerated pulsar, Phys. Rev. D 89(10), 103013 (2014)

    Article  ADS  Google Scholar 

  8. F. Carrasco and O. Reula, Covariant hyperbolization of force-free electrodynamics, Phys. Rev. D 93(8), 085013 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  9. J. Yu, Q. Ma, V. Motto-Ros, W. Lei, X. Wang, and X. Bai, Generation and expansion of laser-induced plasma as a spectroscopic emission source, Front. Phys. 7(6), 649 (2012)

    Article  Google Scholar 

  10. Z. H. Hu, M. D. Chen, and Y. N. Wang, Current neutralization and plasma polarization for intense ion beams propagating through magnetized background plasmas in a two-dimensional slab approximation, Front. Phys. 9(2), 226 (2014)

    Article  Google Scholar 

  11. J. Zhu, K. Zhu, L. Tao, X. Xu, C. Lin, W. Ma, H. Lu, Y. Zhao, Y. Lu, J. Chen, and X. Yan, Distribution uniformity of laser-accelerated proton beams, Chin. Phys. C 41(9), 097001 (2017)

    Article  ADS  Google Scholar 

  12. M. Fathi, A dynamical approach to the exterior geometry of a perfect fluid as a relativistic star, Chin. Phys. C 37(2), 025101 (2013)

    Article  Google Scholar 

  13. H. Qin, J. W. Burby, and R. C. Davidson, Field theory and weak Euler-Lagrange equation for classical particlefield systems, Phys. Rev. E 90(4), 043102 (2014)

    Article  ADS  Google Scholar 

  14. L. Infeld, Bull. Acad. Pol. Sci. 5, 491 (1957); also available in the book: Asim O. Barut,Electrodynamics and Classical Theory of Fields & Particles, New York: Dover Publication, INC, 1980, pp 65–66

    Google Scholar 

  15. R. Hakim, Remarks on relativistic statistical mechanics (I), J. Math. Phys. 8(6), 1315 (1967)

    Article  ADS  Google Scholar 

  16. R. Hakim, Remarks on relativistic statistical mechanics (II): Hierarchies for the Reduced Densities, J. Math. Phys. 8(7), 1379 (1967)

    Article  ADS  Google Scholar 

  17. M. Gedalin, Covariant relativistic hydrodynamics of multispecies plasma and generalized Ohm’s law, Phys. Rev. Lett. 76(18), 3340 (1996)

    Article  ADS  Google Scholar 

  18. G. Hornig, The covariant transport of electromagnetic fields and its relation to magnetohydrodynamics, Phys. Plasmas 4(3), 646 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  19. K. C. Baral and J. N. Mohanty, Covariant formulation of the Fokker–Planck equation for moderately coupled relativistic magnetoplasma, Phys. Plasmas 7(4), 1103 (2000)

    Article  ADS  Google Scholar 

  20. C. Tian, Manifestly covariant classical correlation dynamics (I): General theory, Ann. Phys. 18(10–11), 783 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. C. Tian, Manifestly covariant classical correlation dynamics (II): Transport equations and Hakim equilibrium conjecture, Ann. Phys. 19(1–2), 75 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. E. D’Avignon, P. J. Morrison, and F. Pegoraro, Action principle for relativistic magnetohydrodynamics, Phys. Rev. D 91(8), 084050 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  23. S. Yang and X. Wang, On Lorentz invariants in relativistic magnetic reconnection, Phys. Plasmas 23(8), 082903 (2016)

    Article  ADS  Google Scholar 

  24. Y. Wang, J. Liu, and H. Qin, Lorentz covariant canonical symplectic algorithms for dynamics of charged particles, Phys. Plasmas 23(12), 122513 (2016)

    Article  ADS  Google Scholar 

  25. Y. Shi, N. J. Fisch, and H. Qin, Effective-action approach to wave propagation in scalar QED plasmas, Phys. Rev. A 94(1), 012124 (2016)

    Article  ADS  Google Scholar 

  26. D. D. Holm, J. E. Marsden, and T. S. Ratiu, The Euler–Poincaré equations and semidirect products with applications to continuum theories, Adv. Math. 137(1), 1 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  27. J. Squire, H. Qin, W. M. Tang, and C. Chandre, The Hamiltonian structure and Euler-Poincaré formulation of the Vlasov-Maxwell and gyrokinetic systems, Phys. Plasmas 20(2), 022501 (2013)

    Article  ADS  Google Scholar 

  28. Y. Zhou, H. Qin, J. W. Burby, and A. Bhattacharjee, Variational integration for ideal magnetohydrodynamics with built-in advection equations, Phys. Plasmas 21(10), 102109 (2014)

    Article  ADS  Google Scholar 

  29. Z. Zhou, Y. He, Y. Sun, J. Liu, and H. Qin, Explicit symplectic methods for solving charged particle trajectories, Phys. Plasmas 24(5), 052507 (2017)

    Article  ADS  Google Scholar 

  30. J. Squire, H. Qin, and W. M. Tang, Gauge properties of the guiding center variational symplectic integrator, Phys. Plasmas 19(5), 052501 (2012)

    Article  ADS  Google Scholar 

  31. J. Xiao, H. Qin, J. Liu, Y. He, R. Zhang, and Y. Sun, Explicit high-order non-canonical symplectic particlein-cell algorithms for Vlasov-Maxwell systems, Phys. Plasmas 22(11), 112504 (2015)

    Article  ADS  Google Scholar 

  32. H. Qin, J. Liu, J. Xiao, R. Zhang, Y. He, Y. Wang, Y. Sun, J. W. Burby, L. Ellison, and Y. Zhou, Canonical symplectic particle-in-cell method for long-term large-scale simulations of the Vlasov–Maxwell equations, Nucl. Fusion 56(1), 014001 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Magnetic Confinement Fusion Energy Research Project (Grant Nos. 2015GB111003 and 2014GB124005), the National Natural Science Foundation of China (Grant Nos. NSFC- 11575185, 11575186, and 11305171), JSPS-NRF-NSFC A3 Foresight Program (Grant No. 11261140328), the Key Research Program of Frontier Sciences CAS (QYZDB-SSW-SYS004), Geo- Algorithmic Plasma Simulator (GAPS) Project, and the National Magnetic Confinement Fusion Energy Research Project (Grant No. 2013GB111002B).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Qin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, P., Qin, H., Liu, J. et al. Geometric field theory and weak Euler–Lagrange equation for classical relativistic particle-field systems. Front. Phys. 13, 135203 (2018). https://doi.org/10.1007/s11467-018-0793-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-018-0793-z

Keywords

Navigation