Advertisement

Frontiers of Physics

, 13:136105 | Cite as

A novel hybrid sp-sp2 metallic carbon allotrope

Research article
  • 14 Downloads

Abstract

In this paper, we propose a novel hybrid sp-sp2 monoclinic carbon allotrope mC12. This allotrope is a promising light metallic material, the mechanical and electronic properties of which are studied based on first-principles calculations. The structure of this new mC12 is mechanically and dynamically stable at ambient pressure and has a low equilibrium density due to its large cell volume. Furthermore, calculations of the elastic constants and moduli reveal that mC12 has a rigid mechanical property. Finally, it exhibits metallic characteristics, owing to the mixture of sp-sp2 hybrid carbon atoms.

Keywords

metallic carbon allotrope first-principles calculations mechanical and electronic properties 

PACS numbers

62.20.-x 63.20.-e 74.20.Pq 

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant No. 11204007), the 111 Project (B17035), the Natural Science New Star of Science and Technologies Research Plan in Shaanxi Province of China (Grant No. 2017KJXX-53), and Education Committee Natural Science Foundation in Shaanxi Province of China (Grant No. 16JK1049). Xiao-Feng Shi is acknowledged for helpful discussions and comments on the manuscript. All the authors thank the computing facilities at the High Performance Computing Center of Xidian University.

References

  1. 1.
    H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley, C60: Buckminsterfullerene, Nature 318, 162 (1985)ADSCrossRefGoogle Scholar
  2. 2.
    S. Iijima, Helical microtubules of graphitic carbon, Nature 354, 56 (1991)ADSCrossRefGoogle Scholar
  3. 3.
    K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306, 666 (2004)ADSCrossRefGoogle Scholar
  4. 4.
    B. Winkler, C. J. Pickard, V. Milman, and G. Thimm, Systematic prediction of crystal structures, Chem. Phys. Lett. 337, 36 (2001)ADSCrossRefGoogle Scholar
  5. 5.
    M. Itoh, M. Kotani, H. Naito, T. Sunada, Y. Kawazoe, and T. Adschiri, New metallic carbon crystal, Phys. Rev. Lett. 102, 055703 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    Y. Yao, J. S. Tse, J. Sun, D. D. Klug, R. Martoňák, and T. Iitaka, Comment on “new metallic carbon crystal”, Phys. Rev. Lett. 102, 229601 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    X. L. Sheng, H. J. Cui, F. Ye, Q. B. Yan, Q. R. Zheng, and G. Su, Octagraphene as a versatile carbon atomic sheet for novel nanotubes, unconventional fullerenes, and hydrogen storage, J. Appl. Phys. 112, 074315 (2012)Google Scholar
  8. 8.
    C. He, L. Sun, C. Zhang, and J. Zhong, Two viable three-dimensional carbon semiconductors with an entirely sp 2 configuration, Phys. Chem. Chem. Phys. 15, 680 (2013)CrossRefGoogle Scholar
  9. 9.
    J. T. Wang, C. Chen, E. Wang, and Y. Kawazoe, A new carbon allotrope with six-fold helical chains in allsp 2 bonding networks, Sci. Rep. 4, 4339 (2014)CrossRefGoogle Scholar
  10. 10.
    G. M. Rignanese and J. C. Charlier, Hypothetical threedimensional all-sp 2 carbon phase, Phys. Rev. B 78, 125415 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    Z. L. Lv, H. L. Cui, H. Wang, X. H. Li, and G. F. Ji, Theoretical study of the elasticity, ideal strength and thermal conductivity of a pure sp 2 carbon, Diamond Relat. Mater. 71, 73 (2017)ADSCrossRefGoogle Scholar
  12. 12.
    Q. Li, Y. Ma, A. R. Oganov, H. Wang, H. Wang, Y. Xu, T. Cui, H. K. Mao, and G. Zou, Superhard monoclinic polymorph of carbon, Phys. Rev. Lett. 102, 175506 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    C. He, L. Sun, C. Zhang, X. Peng, K. Zhang, and J. Zhong, new superhard carbon phases between graphite and diamond, Solid State Commun. 152, 1560 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    X. L. Sheng, Q. B. Yan, F. Ye, Q. R. Zheng, and G. Su, T-carbon: A novel carbon allotrope, Phys. Rev. Lett. 106, 155703 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    J. Zhang, R. Wang, X. Zhu, A. Pan, C. Han, X. Li, Z. Dan, C. Ma, W. Wang, H. Su, and C. Niu, Pseudo-topotactic conversion of carbon nanotubes to Tcarbon nanowires under picosecond laser irradiation in methanol, Nat. Commun. 8, 683 (2017)ADSCrossRefGoogle Scholar
  16. 16.
    J. T. Wang, C. Chen, and Y. Kawazoe, Lowtemperature phase transformation from graphite to sp 3 orthorhombic carbon, Phys. Rev. Lett. 106, 075501 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    X. Zhang, Y. Wang, J. Lv, C. Zhu, Q. Li, M. Zhang, Q. Li, and Y. Ma, First-principles structural design of superhard materials, J. Chem. Phys. 138, 114101 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    Q. Wei, M. Zhang, H. Yan, Z. Lin, and X. Zhu, Structural, electronic and mechanical properties of Immacarbon, EPL 107, 27007 (2014)Google Scholar
  19. 19.
    K. Umemoto, R. M. Wentzcovitch, S. Saito, and T. Miyake, Body-centered tetragonal C4: A viable sp 3 carbon allotrope, Phys. Rev. Lett. 104, 125504 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    Z. Zhao, B. Xu, X. F. Zhou, L. M. Wang, B. Wen, J. He, Z. Liu, H. T. Wang, and Y. Tian, Novel superhard carbon: C-centered orthorhombic C8, Phys. Rev. Lett. 107, 215502 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    C. Y. Niu, X. Q. Wang, and J. T. Wang, K6 carbon: A metallic carbon allotrope in sp 3 bonding networks, J. Chem. Phys. 140, 054514 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    Y. Cheng, R. Melnik, Y. Kawazoe, and B. Wen, Three dimensional metallic carbon from distorting sp 3-bond, Crystal. Growth. Design. 16, 1360 (2016)CrossRefGoogle Scholar
  23. 23.
    J. Q. Wang, C. X. Zhao, C. Y. Niu, Q. Sun, and Y. Jia, C20-T carbon: A novel superhard sp 3 carbon allotrope with large cavities, J. Phys.: Conden. Matter 28, 475402 (2016)Google Scholar
  24. 24.
    Z. Li, F. Gao, and Z. Xu, Strength, hardness, and lattice vibrations of Z-carbon and W-carbon: First-principles calculations, Phys. Rev. B 85, 144115 (2012)Google Scholar
  25. 25.
    M. J. Rice, A. R. Bishop, and D. K. Campbell, Unusual soliton properties of the infinite polyyne chain, Phys. Rev. Lett. 51, 2136 (1983)ADSCrossRefGoogle Scholar
  26. 26.
    T. R. Chalifoux WA, Synthesis of polyynes to model the sp-carbon allotrope carbyne, Nat. Chem. 2, 967 (2010)CrossRefGoogle Scholar
  27. 27.
    H. Hirai and K. I. Kondo, Modified phases of diamond formed under shock compression and rapid quenching, Science 253, 772 (1991)ADSCrossRefGoogle Scholar
  28. 28.
    W. L. Mao, H. k. Mao, P. J. Eng, T. P. Trainor, M. Newville, C. C. Kao, D. L. Heinz, J. Shu, Y. Meng, and R. J. Hemley, Bonding changes in compressed superhard graphite, Science 302, 425 (2003)ADSCrossRefGoogle Scholar
  29. 29.
    Y. Wang, J. E. Panzik, B. Kiefer, and K. K. Lee, Crystal structure of graphite under room-temperature compression and decompression, Sci. Rep. 2, 520 (2012)ADSCrossRefGoogle Scholar
  30. 30.
    S. Zhang, Q. Wang, X. Chen, and P. Jena, Stable threedimensional metallic carbon with interlocking hexagons, Proc. Natl. Acad. Sci. USA 110, 18809 (2013)ADSCrossRefGoogle Scholar
  31. 31.
    M. Hu, M. Ma, Z. Zhao, D. Yu, and J. He, Superhard sp 2-sp 3 hybrid carbon allotropes with tunable electronic properties, AIP Advances 6, 055020 (2016)ADSCrossRefGoogle Scholar
  32. 32.
    Y. Y. Zhang, S. Chen, H. Xiang, and X. G. Gong, Hybrid crystalline sp 2-sp 3 carbon as a high-efficiency solar cell absorber, Carbon 109, 246 (2016)CrossRefGoogle Scholar
  33. 33.
    C. X. Zhao, C. Y. Niu, Z. J. Qin, X. Y. Ren, J. T. Wang, J. H. Cho, and Y. Jia, H18 carbon: A new metallic phase with sp 2-sp 3 hybridized bonding network, Sci. Rep. 6, 21879 (2016)ADSCrossRefGoogle Scholar
  34. 34.
    Y. Pan, M. Hu, M. Ma, Z. Li, Y. Gao, M. Xiong, G. Gao, Z. Zhao, Y. Tian, B. Xu, and J. He, Multithreaded conductive carbon: 1D conduction in 3D carbon, Carbon 115, 584 (2017)CrossRefGoogle Scholar
  35. 35.
    Q. Wei, Q. Zhang, H. Yan, and M. Zhang, A new superhard carbon allotrope: Tetragonal C64, J. Mater. Sci. 52, 2385 (2017)ADSCrossRefGoogle Scholar
  36. 36.
    X. Wu, X. Shi, M. Yao, S. Liu, X. Yang, L. Zhu, T. Cui, and B. Liu, Superhard three-dimensional carbon with metallic conductivity, Carbon 123, 311 (2017)CrossRefGoogle Scholar
  37. 37.
    P. D. Jarowski, M. D. Wodrich, C. S. Wannere, P. v. R. Schleyer, and K. N. Houk, How large is the conjugative stabilization of diynes? J. Am. Chem. Soc. 126, 15036 (2004)CrossRefGoogle Scholar
  38. 38.
    H. Bu, M. Zhao, Y. Xi, X. Wang, H. Peng, C. Wang, and X. Liu, Is yne-diamond a super-hard material? EPL 100, 56003 (2012)ADSCrossRefGoogle Scholar
  39. 39.
    S. W. Cranford and M. J. Buehler, Mechanical properties of graphyne, Carbon 49, 4111 (2011)CrossRefGoogle Scholar
  40. 40.
    N. Narita, S. Nagai, S. Suzuki, and K. Nakao, Electronic structure of three-dimensional graphyne, Phys. Rev. B 62, 11146 (2000)ADSCrossRefGoogle Scholar
  41. 41.
    Y. Wang, J. Lv, L. Zhu, and Y. Ma, Crystal structure prediction via particle-swarm optimization, Phys. Rev. B 82, 094116 (2010)ADSCrossRefGoogle Scholar
  42. 42.
    Y. Wang, J. Lv, L. Zhu, and Y. Ma, CALYPSO: A method for crystal structure prediction, Comput. Phys. Commun. 183, 2063 (2012)ADSCrossRefGoogle Scholar
  43. 43.
    G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54, 11169 (1996)ADSCrossRefGoogle Scholar
  44. 44.
    W. Kohn and L. J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. 140, A1133 (1965)ADSMathSciNetCrossRefGoogle Scholar
  45. 45.
    J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77, 3865 (1996)ADSCrossRefGoogle Scholar
  46. 46.
    G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59, 1758 (1999)ADSCrossRefGoogle Scholar
  47. 47.
    A. Togo, F. Oba, I. Tanaka, First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures, Phys. Rev. B 78, 134106 (2008)ADSCrossRefGoogle Scholar
  48. 48.
    A. V. Krukau, O. A. Vydrov, A. F. Izmaylov, G. E. Scuseria, Influence of the exchange screening parameter on the performance of screened hybrid functionals, J. Chem. Phys. 125, 224106 (2006)ADSCrossRefGoogle Scholar
  49. 49.
    F. Mouhat and F. X. Coudert, Necessary and sufficient elastic stability conditions in various crystal systems, Phys. Rev. B 90, 224104 (2014)ADSCrossRefGoogle Scholar
  50. 50.
    R. Hill, The elastic behaviour of a crystalline aggregate, Proc. Phys. Soc. A 65, 349 (1952)ADSCrossRefGoogle Scholar
  51. 51.
    Q. Zhang, Q. Wei, H. Yan, Q. Fan, X. Zhu, J. Zhang, and D. Zhang, Mechanical and electronic properties of P42/mnm silicon carbides, Z. Naturforsch. A 71, 387 (2016)ADSGoogle Scholar
  52. 52.
    S. F. Pugh, Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, Lond. Edinb. Dublin Philos. Mag. J. Sci. 45, 823 (1954)CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Physics and Optoelectronic EngineeringXidian UniversityXi’anChina
  2. 2.School of MicroelectronicsXidian UniversityXi’anChina
  3. 3.College of Physics and Optoelectronic Technology, Nonlinear Research InstituteBaoji University of Arts and SciencesBaojiChina
  4. 4.College of Chemistry and Chemical EngineeringBaoji University of Arts and SciencesBaojiChina

Personalised recommendations