Skip to main content
Log in

Temperature dependence of the excitonic spectra of monolayer transition metal dichalcogenides

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

We theoretically study the temperature dependence of the excitonic spectra of monolayer transition metal dichalcogenides using the O′Donnell equation, \({E_g}(T) = {E_g}(0) - S\langle \hbar \omega \rangle [cloth(\frac{{\hbar \omega }}{{2{k_B}T}} - 1)]\) . We develop a theoretical model for the quantitative estimation of the Huang–Rhys factor S and average phonon energy \(\langle \hbar \omega \rangle \) based on exciton coupling with longitudinal optical and acoustic phonons in the Fröhlich and deformation potential mechanisms, respectively. We present reasonable explanations for the fitted values of the Huang–Rhys factor and average phonon energy adopted in experiments. Comparison with experimental results reveals that the temperature dependence of the peak position in the excitonic spectra can be well reproduced by modulating the polarization parameter and deformation potential constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Y. Yu, X. D. Cui, X. D. Xu, and W. Yao, Valley excitons in two-dimensional semiconductors, Natl. Sci. Rev. 2(1), 57 (2015)

    Article  Google Scholar 

  2. A. V. Kolobov and J. Tominaga, Two-dimensional transition-metal dichalcogenides, Springer Series in Materials Science 239, 321 (2016)

    Article  ADS  Google Scholar 

  3. S. Tongay, J. Zhou, C. Ataca, K. Lo, T. S. Matthews, J. Li, J. C. Grossman, and J. Wu, Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2, Nano Lett. 12(11), 5576 (2012)

    Article  ADS  Google Scholar 

  4. J. S. Ross, S. F. Wu, H. Y. Yu, N J. Ghimire, A. M. Jones, G. Aivazian, J. Q. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. D. Xu, Electrical control of neutral and charged excitons in a monolayer semiconductor, Nature Commun. 4, 1474 (2013)

    Article  ADS  Google Scholar 

  5. A. P. S. Gaur, S. Sahoo, J. F. Scott, and R. S. Katiyar, Electron–phonon interaction and double-resonance raman studies in monolayer WS2, J. Phys. Chem. C 119(9), 5146 (2015)

    Article  Google Scholar 

  6. A. Arora, M. Koperski, K. Nogajewski, J. Marcus, C. Faugeras, and M. Potemski, Excitonic resonances in thin films of WSe2: From monolayer to bulk material, Nanoscale 7(23), 10421 (2015)

    Article  ADS  Google Scholar 

  7. A. A. Mitioglu, K. Galkowski, A. Surrente, L. Klopotowski, D. Dumcenco, A. Kis, D. K. Maude, and P. Plochocka, Magnetoexcitons in large area CVD-grown monolayer MoS2 and MoSe2 on sapphire, Phys. Rev. B 93(16), 165412 (2016)

    Article  ADS  Google Scholar 

  8. P. Dey, J. Paul, Z. Wang, C. E. Stevens, C. Liu, A. H. Romero, J. Shan, D. J. Hilton, and D. Karaiskaj, Optical coherence in atomic-monolayer transition-metal dichalcogenides limited by electron-phonon interactions, Phys. Rev. Lett. 116(12), 127402 (2016)

    Article  ADS  Google Scholar 

  9. J. W. Christopher, B. B. Goldberg, and A. K. Swan, Long tailed trions in monolayer MoS2: Temperature dependent asymmetry and resulting red-shift of trion photoluminescence spectra, Sci. Rep. 7(1), 14062 (2017)

    Article  ADS  Google Scholar 

  10. K. P. O’Donnell and X. Chen, Temperature dependence of semiconductor band gaps, Appl. Phys. Lett. 58(25), 2924 (1991)

    Article  ADS  Google Scholar 

  11. K. L. He, N. Kumar, L. Zhao, Z. F. Wang, K. F. Mak, H. Zhao, and J. Shan, Tightly bound excitons in monolayer WSe2, Phys. Rev. Lett. 113(2), 026803 (2014)

    Article  ADS  Google Scholar 

  12. A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. L. Li, O. B. Aslan, D. R. Reichman, M. S. Hybertsen, and T. F. Heinz, Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2, Phys. Rev. Lett. 113(7), 076802 (2014)

    Article  ADS  Google Scholar 

  13. T. Olsen, S. Latini, F. Rasmussen, and K. S. Thygesen, Simple screened hydrogen model of excitons in twodimensional materials, Phys. Rev. Lett. 116(5), 056401 (2016)

    Article  ADS  Google Scholar 

  14. K. Kaasbjerg, K. S. Thygesen, and K. W. Jacobsen, Phonon-limited mobility in n-type single-layer MoS2 from first principles, Phys. Rev. B 85(11), 115317 (2012)

    Article  ADS  Google Scholar 

  15. K. Kaasbjerg, K. S. Bhargavi, and S. S. Kubakaddi, Hot-electron cooling by acoustic and optical phonons in monolayers of MoS2 and other transition-metal dichalcogenides, Phys. Rev. B 90(16), 165436 (2014)

    Article  ADS  Google Scholar 

  16. A. Ramasubramaniam, Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides, Phys. Rev. B 86(11), 115409 (2012)

    Article  ADS  Google Scholar 

  17. A. Thilagam, Ultrafast exciton relaxation in monolayer transition metal dichalcogenides, J. Appl. Phys. 119(16), 164306 (2016)

    Article  ADS  Google Scholar 

  18. A. Thilagam, Exciton formation assisted by longitudinal optical phonons in monolayer transition metal dichalcogenides, J. Appl. Phys. 120(12), 124306 (2016)

    Article  ADS  Google Scholar 

  19. M. C. Klein, F. Hache, D. Ricard, and C. Flytzanis, Size dependence of electron-phonon coupling in semiconductor nanospheres: The case of CdSe, Phys. Rev. B 42(17), 11123 (1990)

    Article  ADS  Google Scholar 

  20. T. Sohier, M. Calandra, and F. Mauri, Two-dimensional Fröhlich interaction in transition-metal dichalcogenide monolayers: Theoretical modeling and first-principles calculations, Phys. Rev. B 94(8), 085415 (2016)

    Article  ADS  Google Scholar 

  21. C. Jin, J. Kim, J. Suh, Z. Shi, B. Chen, X. Fan, M. Kam, K. Watanabe, T. Taniguchi, S. Tongay, A. Zettl, J. Q. Wu, and F. Wang, Interlayer electron-phonon coupling in WSe2/hBN heterostructures, Nat. Phys. 13, 127 (2017)

    Article  Google Scholar 

  22. C. M. Chow, H. Y. Yu, A. M. Jones, J. Q. Yan, D. G. Mandrus, T. Taniguchi, K. Watanabe, W. Yao, and X. D. Xu, Unusual exciton–phonon interactions at van der Waals engineered interfaces, Nano Lett. 17(2), 1194 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 11674241) and Young Core Instructor of Peiyang (Grant No. 11303267).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zi-Wu Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, ZW., Li, RZ., Dong, XY. et al. Temperature dependence of the excitonic spectra of monolayer transition metal dichalcogenides. Front. Phys. 13, 137305 (2018). https://doi.org/10.1007/s11467-018-0786-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-018-0786-y

Keywords

Navigation