Frontiers of Physics

, 13:138109 | Cite as

Two-dimensional aluminum monoxide nanosheets: A computational study

  • Shiru Lin
  • Yanchao Wang
  • Zhongfang ChenEmail author
Research Article
Part of the following topical collections:
  1. Inorganic Two-Dimensional Nanomaterials


By means of density functional theory (DFT) computations and particle-swarm optimization (PSO) structure searches, we herein predict five low-lying energy structures of two-dimensional (2D) aluminum monoxide (AlO) nanosheets. Their high cohesive energy, absence of imaginary phonon dispersion, and good thermal stability make them feasible targets for experimental realization. These monolayers exhibit diverse structural topologies, for instance, PmA- and Pmm-AlO possess buckled four- and six-membered AlO rings, whereas P62-, PmB-, and P6m-AlO have pores of varied sizes. Interestingly, the most energetically preferred monolayers, PmA- and Pmm-AlO, feature wide band gaps (2.45 and 5.13 eV, respectively), which are promising for green and blue light-emitting devices (LEDs) and photodetectors.


2D materials density functional calculations particle swarm optimization wide-band-gap semiconductor 



This work was supported by the National Science Foundation-Centers of Research Excellence in Science and Technology (NSF-CREST Center) for Innovation, Research and Education in Environmental Nanotechnology (CIRE2N) (Grant No. HRD-1736093) and NASA (Grant No. 17-EPSCoRProp-0032).


  1. 1.
    K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306(5696), 666 (2004)ADSCrossRefGoogle Scholar
  2. 2.
    Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Experimental observation of the quantum Hall effect and Berry’s phase in graphene, Nature 438(7065), 201 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    C. L. Kane and E. J. Mele, Quantum spin Hall effect in graphene, Phys. Rev. Lett. 95(22), 226801 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    K. S. Novoselov, A. K. Geim, S. Morozov, D. Jiang, M. Katsnelson, I. Grigorieva, S. Dubonos, and A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene, Nature 438(7065), 197 (2005)ADSCrossRefGoogle Scholar
  5. 5.
    S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, Giant intrinsic carrier mobilities in graphene and its bilayer, Phys. Rev. Lett. 100(1), 016602 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    F. Schwierz, Graphene transistors, Nat. Nanotechnol. 5(7), 487 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    A. Molle, J. Goldberger, M. Houssa, Y. Xu, S. C. Zhang, and D. Akinwande, Buckled two-dimensional xene sheets, Nat. Mater. 16(2), 163 (2017)ADSCrossRefGoogle Scholar
  8. 8.
    Q. Tang and Z. Zhou, Graphene-analogous lowdimensional materials, Prog. Mater. Sci. 58(8), 1244 (2013)CrossRefGoogle Scholar
  9. 9.
    K. S. Novoselov, A. Mishchenko, A. Carvalho, and A. H. Castro Neto, 2D materials and van der Waals heterostructures, Science 353(6298), aac9439 (2016)CrossRefGoogle Scholar
  10. 10.
    S. Lin, J. Gu, Y. Wang, Y. Wang, S. Zhang, X. Liu, H. Zeng, and Z. Chen, Porous silaphosphorene, silaarsenene and silaantimonene: A sweet marriage of Si and P/As/Sb, J. Mater. Chem. A 6(8), 3738 (2018)CrossRefGoogle Scholar
  11. 11.
    G. Wang, R. Pandey, and S. P. Karna, Atomically thin group V elemental films: theoretical investigations of antimonene allotropes, ACS Appl. Mater. Interfaces 7(21), 11490 (2015)CrossRefGoogle Scholar
  12. 12.
    L. Kou, C. Chen, and S. C. Smith, Phosphorene: Fabrication, properties, and applications, J. Phys. Chem. Lett. 6(14), 2794 (2015)CrossRefGoogle Scholar
  13. 13.
    S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutierrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, Progress, challenges, and opportunities in two-dimensional materials beyond graphene, ACS Nano 7(4), 2898 (2013)CrossRefGoogle Scholar
  14. 14.
    Q. Tang, Z. Zhou, and Z. Chen, Innovation and discovery of graphene-like materials via density-functional theory computations, Wiley Interdiscip. Rev. Comput. Mol. Sci. 5(5), 360 (2015)CrossRefGoogle Scholar
  15. 15.
    J. J. Zhao, H. S. Liu, Z. M. Yu, R. G. Quhe, S. Zhou, Y. Y. Wang, C. C. Liu, H. X. Zhong, N. N. Han, J. Lu, Y. G. Yao, and K. H. Wu, Rise of silicene: A competitive 2D material, Prog. Mater. Sci. 83, 24 (2016)CrossRefGoogle Scholar
  16. 16.
    G. G. Guzmán-Verri and L. C. Lew Yan Voon, Electronic structure of silicon-based nanostructures, Phys. Rev. B 76(7), 075131 (2007)ADSCrossRefGoogle Scholar
  17. 17.
    L. Chen, C. C. Liu, B. Feng, X. He, P. Cheng, Z. Ding, S. Meng, Y. Yao, and K. Wu, Evidence for Dirac fermions in a honeycomb lattice based on silicon, Phys. Rev. Lett. 109(5), 056804 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    P. De Padova, P. Vogt, A. Resta, J. Avila, I. Razado-Colambo, C. Quaresima, C. Ottaviani, B. Olivieri, T. Bruhn, T. Hirahara, T. Shirai, S. Hasegawa, M. Carmen Asensio, and G. Le Lay, Evidence of Dirac fermions in multilayer silicene, Appl. Phys. Lett. 102(16), 163106 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    E. Durgun, S. Tongay, and S. Ciraci, Silicon and III-V compound nanotubes: Structural and electronic properties, Phys. Rev. B 72(7), 075420 (2005)ADSCrossRefGoogle Scholar
  20. 20.
    U. Röthlisberger, W. Andreoni, and M. Parrinello, Structure of nanoscale silicon clusters, Phys. Rev. Lett. 72(5), 665 (1994)ADSCrossRefGoogle Scholar
  21. 21.
    P. Vogt, P. De Padova, C. Quaresima, J. Avila, E. Frantzeskakis, M. C. Asensio, A. Resta, B. Ealet, and G. Le Lay, Silicene: compelling experimental evidence for graphenelike two-dimensional silicon, Phys. Rev. Lett. 108(15), 155501 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    S. Cahangirov, M. Topsakal, E. Akturk, H. Sahin, and S. Ciraci, Two-and one-dimensional honeycomb structures of silicon and germanium, Phys. Rev. Lett. 102(23), 236804 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    K. Takeda and K. Shiraishi, Theoretical possibility of stage corrugation in Si and Ge analogs of graphite, Phys. Rev. B 50(20), 14916 (1994)ADSCrossRefGoogle Scholar
  24. 24.
    Y. Jing, Z. Zhou, C. R. Cabrera, and Z. F. Chen, Graphene, inorganic graphene analogs and their composites for lithium ion batteries, J. Mater. Chem. A 2(31), 12104 (2014)CrossRefGoogle Scholar
  25. 25.
    M. Dávila, L. Xian, S. Cahangirov, A. Rubio, and G. Le Lay, Germanene: A novel two-dimensional germanium allotrope akin to graphene and silicene, New J. Phys. 16(9), 095002 (2014)CrossRefGoogle Scholar
  26. 26.
    M. Houssa, E. Scalise, K. Sankaran, G. Pourtois, V. V. Afanas’ev, and A. Stesmans, Electronic properties of hydrogenated silicene and germanene, Appl. Phys. Lett. 98(22), 223107 (2011)ADSCrossRefGoogle Scholar
  27. 27.
    L. Li, S. Z. Lu, J. Pan, Z. Qin, Y. Q. Wang, Y. Wang, G. Y. Cao, S. Du, and H. J. Gao, Buckled germanene formation on Pt(111), Adv. Mater. 26(28), 4820 (2014)CrossRefGoogle Scholar
  28. 28.
    S. Balendhran, S. Walia, H. Nili, S. Sriram, and M. Bhaskaran, Elemental analogues of graphene: Silicene, germanene, stanene, and phosphorene, Small 11(6), 640 (2015)Google Scholar
  29. 29.
    F. F. Zhu, W. J. Chen, Y. Xu, C. L. Gao, D. D. Guan, C. H. Liu, D. Qian, S. C. Zhang, and J. F. Jia, Epitaxial growth of two-dimensional stanene, Nat. Mater. 14(10), 1020 (2015)ADSCrossRefGoogle Scholar
  30. 30.
    P. Z. Tang, P. C. Chen, W. D. Cao, H. Q. Huang, S. Cahangirov, L. D. Xian, Y. Xu, S. C. Zhang, W. H. Duan, and A. Rubio, Stable two-dimensional dumbbell stanene: A quantum spin Hall insulator, Phys. Rev. B 90(12), 121408 (2014)ADSCrossRefGoogle Scholar
  31. 31.
    S. Rachel and M. Ezawa, Giant magnetoresistance and perfect spin filter in silicene, germanene, and stanene, Phys. Rev. B 89(19), 195303 (2014)ADSCrossRefGoogle Scholar
  32. 32.
    N. Gao, H. S. Liu, S. Zhou, Y. Z. Bai, and J. J. Zhao, Interaction between post-graphene group-iv honeycomb monolayers and metal substrates: Implication for synthesis and structure control, J. Phys. Chem. C 121(9), 5123 (2017)CrossRefGoogle Scholar
  33. 33.
    L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, Black phosphorus field-effect transistors, Nat. Nanotechnol. 9(5), 372 (2014)ADSCrossRefGoogle Scholar
  34. 34.
    H. O. Churchill and P. Jarillo-Herrero, Phosphorus joins the family, Nat. Nanotechnol. 9(5), 330 (2014)ADSCrossRefGoogle Scholar
  35. 35.
    H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, and P. D. Ye, Phosphorene: An unexplored 2D semiconductor with a high hole mobility, ACS Nano 8(4), 4033 (2014)CrossRefGoogle Scholar
  36. 36.
    A. Carvalho, M. Wang, X. Zhu, A. S. Rodin, H. Su, and A. H. Castro Neto, Phosphorene: From theory to applications, Nat. Rev. Mater. 1(11), 16061 (2016)ADSCrossRefGoogle Scholar
  37. 37.
    Y. Jing, X. Zhang, and Z. Zhou, Phosphorene: What can we know from computations? Wiley Interdiscip. Rev. Comput. Mol. Sci. 6(1), 5 (2016)CrossRefGoogle Scholar
  38. 38.
    R. Fei and L. Yang, Strain-engineering the anisotropic electrical conductance of few-layer black phosphorus, Nano Lett. 14(5), 2884 (2014)ADSCrossRefGoogle Scholar
  39. 39.
    L. Wang, A. Kutana, X. Zou, and B. I. Yakobson, Electro-mechanical anisotropy of phosphorene, Nanoscale 7(21), 9746 (2015)ADSCrossRefGoogle Scholar
  40. 40.
    H. S. Tsai, S. W. Wang, C. H. Hsiao, C. W. Chen, H. Ouyang, Y. L. Chueh, H. C. Kuo, and J. H. Liang, Direct synthesis and practical bandgap estimation of multilayer arsenene nanoribbons, Chem. Mater. 28(2), 425 (2016)CrossRefGoogle Scholar
  41. 41.
    S. Zhang, Z. Yan, Y. Li, Z. Chen, and H. Zeng, Atomically thin arsenene and antimonene: Semimetalsemiconductor and indirect-direct band-gap transitions, Angew. Chem. Int. Ed. 54(10), 3112 (2015)CrossRefGoogle Scholar
  42. 42.
    S. Zhang, S. Guo, Z. Chen, Y. Wang, H. Gao, J. Gómez-Herrero, P. Ares, F. Zamora, Z. Zhu, and H. Zeng, Recent progress in 2D group-VA semiconductors: From theory to experiment, Chem. Soc. Rev. 47(3), 982 (2018)CrossRefGoogle Scholar
  43. 43.
    S. Zhang, M. Xie, F. Li, Z. Yan, Y. Li, E. Kan, W. Liu, Z. Chen, and H. Zeng, Semiconducting group 15 monolayers: A broad range of band gaps and high carrier mobilities, Angew. Chem. Int. Ed. 55(5), 1666 (2016)CrossRefGoogle Scholar
  44. 44.
    H. S. Tsai, C. W. Chen, C. H. Hsiao, H. Ouyang, and J. H. Liang, The advent of multilayer antimonene nanoribbons with room temperature orange light emission, Chem. Commun. 52(54), 8409 (2016)CrossRefGoogle Scholar
  45. 45.
    P. Ares, F. Aguilar-Galindo, D. Rodriguez-San-Miguel, D. A. Aldave, S. Diaz-Tendero, M. Alcami, F. Martin, J. Gomez-Herrero, and F. Zamora, Mechanical isolation of highly stable antimonene under ambient conditions, Adv. Mater. 28(30), 6332 (2016)CrossRefGoogle Scholar
  46. 46.
    C. Gibaja, D. Rodriguez-San-Miguel, P. Ares, J. Gomez-Herrero, M. Varela, R. Gillen, J. Maultzsch, F. Hauke, A. Hirsch, G. Abellan, and F. Zamora, Few-layer antimonene by liquid-phase exfoliation, Angew. Chem. Int. Ed. 55(46), 14345 (2016)CrossRefGoogle Scholar
  47. 47.
    J. Ji, X. Song, J. Liu, Z. Yan, C. Huo, S. Zhang, M. Su, L. Liao, W. Wang, Z. Ni, Y. Hao, and H. Zeng, Two-dimensional antimonene single crystals grown by van der Waals epitaxy, Nat. Commun. 7, 13352 (2016)ADSCrossRefGoogle Scholar
  48. 48.
    J. H. Yuan, N. N. Yu, K. H. Xue, and X. S. Miao, Stability, electronic and thermodynamic properties of aluminene from first-principles calculations, Appl. Surf. Sci. 409, 85 (2017)ADSCrossRefGoogle Scholar
  49. 49.
    C. Kamal, A. Chakrabarti, and M. Ezawa, Aluminene as highly hole-doped graphene, New J. Phys. 17(8), 083014 (2015)ADSCrossRefGoogle Scholar
  50. 50.
    D. C. Tyte, B2[π]-A2[σ] band system of aluminium monoxide, Nature 202(4930), 383 (1964)ADSCrossRefGoogle Scholar
  51. 51.
    M. Hoch and H. L. Johnston, Formation, stability and crystal structure of the solid aluminum suboxides: Al2O and AlO1, J. Am. Chem. Soc. 76(9), 2560 (1954)CrossRefGoogle Scholar
  52. 52.
    J. Koput and K. A. Peterson, ab initio prediction of the potential energy surface and vibrational–rotational energy levels of X2A′ BeOH, J. Phys. Chem. A 107(19), 3981 (2003)CrossRefGoogle Scholar
  53. 53.
    C. Dohmeier, D. Loos, and H. Schnockel, Aluminum(I) and gallium(I) compounds: Syntheses, structures, and reactions, Angew. Chem. Int. Ed. Engl. 35(2), 129 (1996)CrossRefGoogle Scholar
  54. 54.
    C. Liang, Conduction characteristics of the lithium iodide‐ aluminum oxide solid electrolytes, J. Electrochem. Soc. 120(10), 1289 (1973)CrossRefGoogle Scholar
  55. 55.
    S. Zhang, J. Yu, H. Li, D. Mao, and G. Lu, Higheffective approach from amino acid esters to chiral amino alcohols over Cu/ZnO/Al2O3 catalyst and its catalytic reaction mechanism, Sci. Rep. 6(1), 33196 (2016)ADSCrossRefGoogle Scholar
  56. 56.
    T. T. Song, M. Yang, J. W. Chai, M. Callsen, J. Zhou, T. Yang, Z. Zhang, J. S. Pan, D. Z. Chi, Y. P. Feng, and S. J. Wang, The stability of aluminium oxide monolayer and its interface with two-dimensional materials, Sci. Rep. 6(1), 29221 (2016)ADSCrossRefGoogle Scholar
  57. 57.
    M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, and M. C. Payne, First-principles simulation: Ideas, illustrations and the CASTEP code, J. Phys.: Condens. Matter 14(11), 2717 (2002)ADSGoogle Scholar
  58. 58.
    M. Kuisma, J. Ojanen, J. Enkovaara, and T. Rantala, Kohn-Sham potential with discontinuity for band gap materials, Phys. Rev. B 82(11), 115106 (2010)ADSCrossRefGoogle Scholar
  59. 59.
    I. E. Castelli, T. Olsen, S. Datta, D. D. Landis, S. Dahl, K. S. Thygesen, and K. W. Jacobsen, Computational screening of perovskite metal oxides for optimal solar light capture, Energy Environ. Sci. 5(2), 5814 (2012)CrossRefGoogle Scholar
  60. 60.
    P. Miró, M. Ghorbani‐Asl, and T. Heine, Two dimensional materials beyond MoS2: Noble-transition-metal dichalcogenides, Angew. Chem. Int. Ed. 53(11), 3015 (2014)CrossRefGoogle Scholar
  61. 61.
    H. Li, C. Tsai, A. L. Koh, L. Cai, A. W. Contryman, A. H. Fragapane, J. Zhao, H. S. Han, H. C. Manoharan, F. Abild-Pedersen, J. K. Nørskov, and X. Zheng, Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies, Nat. Mater. 15(1), 48 (2016)ADSCrossRefGoogle Scholar
  62. 62.
    Y. Wang, J. Lv, L. Zhu, and Y. Ma, Crystal structure prediction via particle-swarm optimization, Phys. Rev. B 82(9), 094116 (2010)ADSCrossRefGoogle Scholar
  63. 63.
    K. Takahashi, A. Yoshikawa and A. Sandhu, Wide bandgap Semiconductors, Berlin Heidelberg: Springer-Verlag, 239 (2007)CrossRefGoogle Scholar
  64. 64.
    M. N. Yoder, Wide bandgap semiconductor materials and devices, IEEE Trans. Electron Dev. 43(10), 1633 (1996)ADSCrossRefGoogle Scholar
  65. 65.
    A. Lafond, C. Guillot-Deudon, J. Vidal, M. Paris, C. La, and S. Jobic, Substitution of Li for Cu in Cu2ZnSnS4: Toward wide band gap absorbers with low cation disorder for thin film solar cells, Inorg. Chem. 56(5), 2712 (2017)CrossRefGoogle Scholar
  66. 66.
    T. P. Chow and R. Tyagi, Wide bandgap compound semiconductors for superior high-voltage unipolar power devices, IEEE Trans. Electron Dev. 41(8), 1481 (1994)ADSCrossRefGoogle Scholar
  67. 67.
    J. Casady and R. W. Johnson, Status of silicon carbide (SiC) as a wide-bandgap semiconductor for hightemperature applications, Solid State Electron, 39(10), 1409 (1996)ADSCrossRefGoogle Scholar
  68. 68.
    P. G. Neudeck, R. S. Okojie, and L. Y. Chen, Hightemperature electronics-a role for wide bandgap semiconductors? Proc. IEEE 90(6), 1065 (2002)CrossRefGoogle Scholar
  69. 69.
    M. Topsakal, E. Aktürk, and S. Ciraci, First-principles study of two-and one-dimensional honeycomb structures of boron nitride, Phys. Rev. B 79(11), 115442 (2009)ADSCrossRefGoogle Scholar
  70. 70.
    K. Watanabe, T. Taniguchi, and H. Kanda, Directbandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal, Nat. Mater. 3(6), 404 (2004)ADSCrossRefGoogle Scholar
  71. 71.
    Y. Kubota, K. Watanabe, O. Tsuda, and T. Taniguchi, Deep ultraviolet light-emitting hexagonal boron nitride synthesized at atmospheric pressure, Science 317(5840), 932 (2007)ADSCrossRefGoogle Scholar
  72. 72.
    E. Monroy, F. Omnès, and F. Calle, Wide-bandgap semiconductor ultraviolet photodetectors, Semicond. Sci. Technol. 18(4), R33 (2003)ADSCrossRefGoogle Scholar
  73. 73.
    H. Y. Lu, A. S. Cuamba, L. Geng, L. Hao, Y. M. Qi, and C. Ting, C3H2: A wide-band-gap semiconductor with strong optical absorption, Phys. Rev. B 96(16), 165420 (2017)ADSCrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of Puerto Rico, Rio Piedras CampusSan JuanUSA
  2. 2.State Key Lab of Superhard MaterialsJilin UniversityChangchunChina

Personalised recommendations