Skip to main content
Log in

Discrete Boltzmann model for implosion- and explosionrelated compressible flow with spherical symmetry

  • Research article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

To kinetically model implosion- and explosion-related phenomena, we present a theoretical framework for constructing a discrete Boltzmann model (DBM) with spherical symmetry in spherical coordinates. To achieve this goal, a key technique is to use local Cartesian coordinates to describe the particle velocity in the kinetic model. Therefore, geometric effects, such as divergence and convergence, are described as a “force term”. To better access the nonequilibrium behavior, even though the corresponding hydrodynamic model is one-dimensional, the DBM uses a discrete velocity model (DVM) with three dimensions. A new scheme is introduced so that the DBM can use the same DVM regardless of whether or not there are extra degrees of freedom. As an example, a DVM with 26 velocities is formulated to construct the DBM at the Navier–Stokes level. Via the DBM, one can study simultaneously the hydrodynamic and thermodynamic nonequilibrium behaviors in implosion and explosion processes that are not very close to the spherical center. The extension of the current model to a multiple-relaxation-time version is straightforward.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Buckmaster, T. L. Jackson, and A. Kumar, Combustion in High-Speed Flows, Springer Netherlands, 1994

    Book  Google Scholar 

  2. L. F. Wang, W. H. Ye, X. T. He, J. F. Wu, Z. F. Fan, C. Xue, H. Y. Guo, W. Y. Miao, Y. T. Yuan, J. Q. Dong, G. Jia, J. Zhang, Y. J. Li, J. Liu, M. Wang, Y. K. Ding, and W. Y. Zhang, Theoretical and simulation research of hydrodynamic instabilities in inertial-confinement fusion implosions, Sci. China Phys. Mech. Astron. 60(5), 055201 (2017)

    Article  ADS  Google Scholar 

  3. A. G. Xu, G. C. Zhang, Y. J. Ying, and C. Wang, Complex fields in heterogeneous materials under shock: modeling, simulation and analysis, Sci. China Phys. Mech. Astron. 59(5), 650501 (2016)

    Article  Google Scholar 

  4. Z. H. Li and H. X. Zhang, Study on gas kinetic unified algorithm for flows from rarefied transition to continuum, J. Comput. Phys. 193(2), 708 (2004)

    Article  ADS  MATH  Google Scholar 

  5. Z. H. Li, A. P. Peng, H. X. Zhang, and J. Y. Yang, Rarefied gas flow simulations using high-order gaskinetic unified algorithms for Boltzmann model equations, Prog. Aerosp. Sci. 74, 81 (2015)

    Article  Google Scholar 

  6. A. P. Peng, Z. H. Li, J. L. Wu, X. Y. Jiang, Validation and analysis of gas-kinetic unified algorithm for solving Boltzmann model equation with vibrational energy excitation, Acta Physica Sinica 66(20), 204703 (2017)

    Google Scholar 

  7. Z. H. Li, A. P. Peng, F. Fang, S. X. Li, and S. Y. Zhang, Gas-kinetic unified algorithm for hypersonic aerothermodynamics covering various flow regimes solving Boltzmann model equation, Acta Physica Sinica 64(22), 204703 (2015)

    Google Scholar 

  8. Z. Li, X. Jiang, J. Wu, A. Peng, Gas-kinetic unified algorithm for Boltzmann model equation in rotational nonequilibrium and its application to the whole range flow regimes, Chin. J. Theor. Appl. Mech. 46(3), 336 (2014)

    Google Scholar 

  9. W. Lei, J. M. Reese, and Y. Zhang, Solving the Boltzmann equation deterministically by the fast spectral method: Application to gas microflows, J. Fluid Mech. 746(746), 53 (2014)

    ADS  MathSciNet  Google Scholar 

  10. L. Wu, J. Zhang, J. M. Reese, and Y. Zhang, A fast spectral method for the Boltzmann equation for monatomic gas mixtures, J. Comput. Phys. 298(C), 602 (2015)

    Google Scholar 

  11. J. Li, C. Zhong, Y. Wang, and C. Zhuo, Implementation of dual time-stepping strategy of the gas-kinetic scheme for unsteady flow simulations, Phys. Rev. E 95(5), 053307 (2017)

    Article  ADS  Google Scholar 

  12. Y. Zhu, C. Zhong, and K. Xu, Implicit unified gaskinetic scheme for steady state solutions in all flow regimes, J. Comput. Phys. 315, 16 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. G. H. Tang, Y. H. Zhang, X. J. Gu, and D. R. Emerson, Lattice Boltzmann modelling Knudsen layer effect in non-equilibrium flows, EPL 83(4), 40008 (2008)

    Article  ADS  Google Scholar 

  14. G. H. Tang, Y. H. Zhang, and D. R. Emerson, Lattice Boltzmann models for nonequilibrium gas flows, Phys. Rev. E 77(4), 046701 (2008)

    Article  ADS  Google Scholar 

  15. G. H. Tang, X. J. Gu, R. W. Barber, D. R. Emerson, and Y. H. Zhang, Lattice Boltzmann simulation of nonequilibrium effects in oscillatory gas flow, Phys. Rev. E 78(2), 026706 (2008)

    Article  ADS  Google Scholar 

  16. J. Meng, Y. Zhang, Kinetic diffuse boundary condition for high-order lattice Boltzmann model with streamingcollision mechanism, J. Comput. Phys. 258, 601 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. J. Meng and Y. Zhang, Gauss-Hermite quadratures and accuracy of lattice Boltzmann models for nonequilibrium gas flows, Phys. Rev. E 83(3Pt 2), 036704 (2011)

    Article  ADS  Google Scholar 

  18. J. Meng, Y. Zhang, and X. Shan, Multiscale lattice Boltzmann approach to modeling gas flows, Phys. Rev. E 83(4Pt 2), 046701 (2010)

    Article  ADS  Google Scholar 

  19. J. P. Meng, N. Dongari, J. M. Reese, and Y. Zhang, A kinetic switching criterion for hybrid modelling of multiscale gas flows, J. Phys. Confer. Ser. 362(1), 12006 (2012)

    Article  Google Scholar 

  20. J. Meng, Y. Zhang, N. G. Hadjiconstantinou, G. A. Radtke, and X. Shan, Lattice ellipsoidal statistical BGK model for thermal non-equilibrium flows, J. Fluid Mech. 718(3), 347 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. K. Xu and J. C. Huang, A Unified Gas-Kinetic Scheme for Continuum and Rarefied Flows, Academic Press Professional, Inc., 2010

    Google Scholar 

  22. K. Xu and J. C. Huang, An improved unified gas-kinetic scheme and the study of shock structures, IMA J. Appl. Math. 76(5), 698 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. J. C. Huang, K. Xu, and P. Yu, A unified gas-kinetic scheme for continuum and rarefied flows ii: multidimensional cases, Commun. Comput. Phys. 12(03), 662 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. A. Xu, G. Zhang, and Y. Zhang, Discrete Boltzmann modeling of compressible flows, Chapter 2, in: Kinetic Theory, edited by G. Z. Kyzas and A. C. Mitropoulos, Croatia: InTech, 2018

    Google Scholar 

  25. A. G. Xu, G. C. Zhang, and Y. J. Ying, Progress of discrete Boltzmann modeling and simulation of combustion system, Acta Physica Sinica 64 64(18), 184701 (2015)

    Google Scholar 

  26. C. Lin, A. Xu, G. Zhang, Y. Li, and S. Succi, Polarcoordinate lattice Boltzmann modeling of compressible flows, Phys. Rev. E 89(1), 013307 (2014)

    Article  ADS  Google Scholar 

  27. A. Xu, C. Lin, G. Zhang, and Y. Li, Multiple-relaxationtime lattice Boltzmann kinetic model for combustion, Phys. Rev. E 91(4), 043306 (2015)

    Article  ADS  Google Scholar 

  28. Y. Gan, A. Xu, G. Zhang, and S. Succi, Discrete Boltzmann modeling of multiphase flows: Hydrodynamic and thermodynamic non-equilibrium effects, Soft Matter 11(26), 5336 (2015)

    Article  ADS  Google Scholar 

  29. H. Lai, A. Xu, G. Zhang, Y. Gan, Y. Ying, and S. Succi, Nonequilibrium thermohydrodynamic effects on the Rayleigh-Taylor instability in compressible flows, Phys. Rev. E 94(2), 023106 (2016)

    Article  ADS  Google Scholar 

  30. C. Lin, A. Xu, G. Zhang, and Y. Li, Doubledistribution- function discrete Boltzmann model for combustion, Combust. Flame 164, 137 (2016)

    Article  Google Scholar 

  31. Y. Zhang, A. Xu, G. Zhang, C. Zhu, and C. Lin, Kinetic modeling of detonation and effects of negative temperature coefficient, Combust. Flame 173, 483 (2016)

    Article  Google Scholar 

  32. Y. Zhang, A. Xu, G. Zhang, and Z. Chen, Discrete Boltzmann method with Maxwell-type boundary condition for slip flow, Commum. Theor. Phys. 69(1), 77 (2018)

    Article  ADS  Google Scholar 

  33. Y. Gan, A. Xu, G. Zhang, and H. Lai, Threedimensional discrete Boltzmann models for compressible flows in and out of equilibrium, Proc. Inst. Mech. Eng. C: J. Mech. Eng. Sci. 232(3), 477 (2018)

    Article  Google Scholar 

  34. C. Lin, A. Xu, G. Zhang, K. Luo, and Y. Li, Discrete Boltzmann modeling of Rayleigh-Taylor instability in bi-component compressible flows, Phys. Rev. E 96(5), 053305 (2017)

    Article  ADS  Google Scholar 

  35. C. Lin, K. Luo, L. Fei, and S. Succi, A multi-component discrete Boltzmann model for nonequilibrium reactive flows, Sci. Rep. 7(1), 14580 (2017)

    Article  ADS  Google Scholar 

  36. Y. Zhang, A. Xu, G. Zhang, Z. Chen, and P. Wang, Discrete ellipsoidal statistical BGK model and Burnett equations, Front. Phys. 13(3), 135101 (2018)

    Article  Google Scholar 

  37. M. La Rocca, A. Montessori, P. Prestininzi, and S. Succi, A multispeed discrete Boltzmann model for transcritical 2d shallow water flows, J. Comput. Phys. 284(C), 117 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond, New York: Oxford University Press, 2001

    MATH  Google Scholar 

  39. S. Toppaladoddi, S. Succi, and J. S. Wettlaufer, Roughness as a route to the ultimate regime of thermal convection, Phys. Rev. Lett. 118(7), 074503 (2017)

    Article  ADS  Google Scholar 

  40. X. Shan, X. Yuan, and H. Chen, Kinetic theory representation of hydrodynamics: A way beyond the Navier- Stokes equation, J. Fluid Mech. 550, 413 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. J. Meng, Y. Zhang, N. G. Hadjiconstantinou, G. A. Radtke, and X. Shan, Lattice ellipsoidal statistical BGK model for thermal non-equilibrium flows, J. Fluid Mech. 718(3), 347 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. D. Sun, M. Zhu, S. Pan, and D. Raabe, Lattice Boltzmann modeling of dendritic growth in a forced melt convection, Acta Mater. 57(6), 1755 (2009)

    Article  Google Scholar 

  43. Y. Wang, C. Shu, H. B. Huang, and C. J. Teo, Multiphase lattice Boltzmann flux solver for incompressible multiphase flows with large density ratio, J. Comput. Phys. 280(C), 404 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Z. Chai, C. Huang, B. Shi, and Z. Guo, A comparative study on the lattice Boltzmann models for predicting effective diffusivity of porous media, Int. J. Heat Mass Transfer 98, 687 (2016)

    Article  Google Scholar 

  45. H. Liu, L. Wu, Y. Ba, and G. Xi, A lattice Boltzmann method for axisymmetric thermocapillary flows, International Journal of Heat & Mass Transfer 104, 337 (2017)

    Article  Google Scholar 

  46. L. Chen, L. Zhang, Q. Kang, H. S. Viswanathan, J. Yao, and W. Tao, Nanoscale simulation of shale transport properties using the lattice Boltzmann method: Permeability 445 and diffusivity, Sci. Rep. 5(1), 8089 (2015)

    Article  ADS  Google Scholar 

  47. C. Zhuo, C. Zhong, and J. Cao, Filter-matrix lattice Boltzmann model for incompressible thermal flows, Phys. Rev. E 85(4), 046703 (2012)

    Article  ADS  Google Scholar 

  48. J. Meng and Y. Zhang, Diffuse reflection boundary condition for high-order lattice Boltzmann models with streaming-collision mechanism, J. Comput. Phys. 258(C), 601 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. L. Wang, G. Zhou, X. Wang, Q. Xiong, and W. Ge, Direct numerical simulation of particle-fluid systems by combining time-driven hard-sphere model and lattice Boltzmann method, Particuology 8(4), 379 (2010)

    Article  Google Scholar 

  50. A. Doostmohammadi, T. N. Shendruk, K. Thijssen, and J. M. Yeomans, Onset of meso-scale turbulence in active nematics, Nat. Commun. 8, 15326 (2017)

    Article  ADS  Google Scholar 

  51. A. G. Xu, G. C. Zhang, Y. B. Gan, F. Chen, and X. J. Yu, Lattice Boltzmann modeling and simulation of compressible flows, Front. Phys. 7(5), 582 (2012)

    Article  Google Scholar 

  52. M. Watari and M. Tsutahara, Possibility of constructing a multispeed Bhatnagar–Gross–Krook thermal model of the lattice Boltzmann method, Phys. Rev. E 70(1), 016703 (2004)

    Article  ADS  Google Scholar 

  53. H. Liu, W. Kang, Q. Zhang, Y. Zhang, H. Duan, and X. T. He, Molecular dynamics simulations of microscopic structure of ultra strong shock waves in dense helium, Front. Phys. 11(6), 115206 (2016)

    Article  Google Scholar 

  54. H. Liu, Y. Zhang, W. Kang, P. Zhang, H. Duan, and X. T. He, Molecular dynamics simulation of strong shock waves propagating in dense deuterium, taking into consideration effects of excited electrons, Phys. Rev. E 95, 023201 (2017)

    Google Scholar 

  55. H. Liu, W. Kang, H. Duan, P. Zhang, and X. He, Recent progresses on numerical investigations of microscopic structure of strong shock waves in fluid, Scientia Sinica Physica Mechanica and Astronomica 47(7), 070003 (2017)

    Article  ADS  Google Scholar 

  56. F. Chen, A. G. Xu, G. C. Zhang, and Y. L. Wang, Two-dimensional MRT LB model for compressible and incompressible flows, Front. Phys. 9(2), 246 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Drs. Chuandong Lin, Yanbiao Gan, and Feng Chen for helpful discussions. The work was supported by the National Natural Science Foundation of China [under Grant Nos. 11475028, 11772064, and U1530261] and the Science Challenge Project (under Grant Nos. JCKY2016212A501 and TZ2016002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ai-Guo Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, AG., Zhang, GC., Zhang, YD. et al. Discrete Boltzmann model for implosion- and explosionrelated compressible flow with spherical symmetry. Front. Phys. 13, 135102 (2018). https://doi.org/10.1007/s11467-018-0777-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-018-0777-z

Keywords

Navigation