Advertisement

Frontiers of Physics

, 13:137802 | Cite as

Quantum confinement effect in β-SiC nanowires

  • Gang Peng (彭刚)
  • Xiaoyan Yu (于晓燕)
  • Yan-Lan He (何焰兰)
  • Gong-Yi Li (李公义)
  • Yi-Xing Liu (刘一星)
  • Xinfang Zhang (张鑫方)
  • Xue-Ao Zhang (张学骜)
Research Article
  • 38 Downloads

Abstract

The quantum confinement effect is important in nanoelectronics and optoelectronics applications; however, there is a discrepancy between the theory of quantum confinement, which indicates that band-gap widening occurs only at small sizes, and experimental observations of band-gap widening in large-diameter nanowires (NWs). This paper reports an obvious blue shift of the absorption edge in the UV-visible absorption spectra of SiC NWs with diameters of 50–300 nm. On the basis of quantum confinement theory and high-resolution transmission electron microscopy images of SiC NWs, band-gap widening in SiC NWs with diameters of up to hundreds of nanometers is fully explained; the results could help to explain similar band-gap widening in other NWs with large diameters.

Keywords

quantum confinement effect SiC nanowires (SiC NWs) band gap 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 61675234) and the Advanced Research Foundation of the National University of Defense Technology (Grant No. zk16-03-40).

References

  1. 1.
    L. Brus, Electronic wave functions in semiconductor clusters: Experiment and theory, J. Phys. Chem. 90(12), 2555 (1986)CrossRefGoogle Scholar
  2. 2.
    L. Han, M. Zeman and A. H. M. Smets, Size control, quantum confinement, and oxidation kinetics of silicon nanocrystals synthesized at a high rate by expanding thermal plasma, Appl. Phys. Lett. 106(21), 213106 (2015)ADSCrossRefGoogle Scholar
  3. 3.
    L. Canham, Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers, Appl. Phys. Lett. 57(10), 1046 (1990)ADSCrossRefGoogle Scholar
  4. 4.
    V. Lehmann and U. Gösele, Porous silicon formation: A quantum wire effect, Appl. Phys. Lett. 58(8), 856 (1991)ADSCrossRefGoogle Scholar
  5. 5.
    X. Wu, J. Fan, T. Qiu, X. Yang, G. Siu, and P. K. Chu, Experimental evidence for the quantum confinement effect in 3C-SiC nanocrystallites, Phys. Rev. Lett. 94(2), 026102 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    F. Koch, V. Petrova-Koch, and T. Muschik, The luminescence of porous Si: The case for the surface state mechanism, J. Lumin. 57(1–6), 271 (1993)CrossRefGoogle Scholar
  7. 7.
    Y. Kanemitsu, H. Uto, Y. Masumoto, T. Matsumoto, T. Futagi, and H. Mimura, Microstructure and optical properties of free-standing porous silicon films: Size dependence of absorption spectra in Si nanometer-sized crystallites, Phys. Rev. B 48(4), 2827 (1993)ADSCrossRefGoogle Scholar
  8. 8.
    D. Dai, X. Guo, and J. Fan, Identification of luminescent surface defect in SiC quantum dots, Appl. Phys. Lett. 106(5), 053115 (2015)ADSCrossRefGoogle Scholar
  9. 9.
    X. Wu, S. Xiong, G. Siu, G. Huang, Y. Mei, Z. Zhang, S. Deng, and C. Tan, Optical emission from excess Si defect centers in Si nanostructures, Phys. Rev. Lett. 91(15), 157402 (2003)ADSCrossRefGoogle Scholar
  10. 10.
    M. Cahay, Quantum confinement VI: Nanostructured materials and devices, Proceedings of the International Symposium, The Electrochemical Society, 2001Google Scholar
  11. 11.
    X. Wu, S. Xiong, D. Fan, Y. Gu, X. Bao, G. Siu, and M. Stokes, Stabilized electronic state and its luminescence at the surface of oxygen-passivated porous silicon, Phys. Rev. B 62(12), R7759 (2000)ADSCrossRefGoogle Scholar
  12. 12.
    T. W. Kim, C. H. Cho, B. H. Kim, and S. J. Park, Quantum confinement effect in crystalline silicon quantum dots in silicon nitride grown using SiH4 and NH3, Appl. Phys. Lett. 88(12), 123102 (2006)ADSCrossRefGoogle Scholar
  13. 13.
    S. W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors, World Scientific, 1994zbMATHGoogle Scholar
  14. 14.
    S. Wang, C. Zhang, Z. Wang, and X. Zu, Quantum confinement effect in silicon carbide nanostructures: A first principles study, Optoelectron. Rel. Mater 4(6), 771 (2010)Google Scholar
  15. 15.
    S. Luo, J. Fan, W. Liu, M. Zhang, Z. Song, C. Lin, X. Wu, and P. K. Chu, Synthesis and low-temperature photoluminescence properties of SnO2 nanowires and nanobelts, Nanotechnology 17(6), 1695 (2006)ADSCrossRefGoogle Scholar
  16. 16.
    V. Eskizeybek, A. Avci, and M. Chhowalla, Structural and optical properties of CdO nanowires synthesized from Cd(OH)2 precursors by calcination, Cryst. Res. Technol. 46(10), 1093 (2011)CrossRefGoogle Scholar
  17. 17.
    A. Phuruangrat, P. Dumrongrojthanath, O. Yayapao, T. Thongtem, and S. Thongtem, Solvothermal synthesis and photocatalytic properties of CdS nanowires under UV and visible irradiation, Mater. Sci. Semicond. Process. 26, 329 (2014)CrossRefGoogle Scholar
  18. 18.
    J. Y. Lee, X. Lu, and Q. Lin, High-Q silicon carbide photonic-crystal cavities, Appl. Phys. Lett. 106(4), 041106 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    H. P. Phan, D. V. Dao, P. Tanner, L. Wang, N. T. Nguyen, Y. Zhu, and S. Dimitrijev, Fundamental piezoresistive coefficients of p-type single crystalline 3CSiC, Appl. Phys. Lett. 104(11), 111905 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    R. Shao, K. Zheng, Y. Zhang, Y. Li, Z. Zhang, and X. Han, Piezoresistance behaviors of ultra-strained SiC nanowires, Appl. Phys. Lett. 101(23), 233109 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    H. P. Phan, The Piezoresistive Effect of Top Down p-Type 3C-SiC Nanowires, Springer International Publishing, 2017CrossRefGoogle Scholar
  22. 22.
    D. Pandey and P. Krishna, The origin of polytype structures, Progress in Crystal growth and Characterization, 7(1–4), 213 (1983)CrossRefGoogle Scholar
  23. 23.
    G. Li, X. Li, Z. Chen, J. Wang, H. Wang, and R. Che, Large areas of centimeters-long SiC nanowires synthesized by pyrolysis of a polymer precursor by a CVD route, J. Phys. Chem. C 113(41), 17655 (2009)CrossRefGoogle Scholar
  24. 24.
    G. Peng, Y. Zhou, Y. He, X. Yu, X. A. Zhang, G. Y. Li, and H. Haick, UV-induced SiC nanowire sensors, J. Phys. D Appl. Phys. 48(5), 055102 (2015)ADSCrossRefGoogle Scholar
  25. 25.
    G. Li, Ph. D. thesis, Synthesis and properties of ultralong SiC and Si3N4 nanowires, College of Science, National University of Defense Technology, China, 2010Google Scholar
  26. 26.
    G. Peng, Y. Zhou, Y. He, X. Yu, and G. Li, Fabrication and properties of ultraviolet photo-detectors based on SiC nanowires, Sci. China Phys. Mech. Astron. 55(7), 1168 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    Y. Li, C. Chen, J. T. Li, Y. Yang, and Z. M. Lin, Surface charges and optical characteristic of colloidal cubic SiC nanocrystals, Nanoscale Res. Lett. 6(1), 454 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    F. A. Reboredo, L. Pizzagalli, and G. Galli, Computational engineering of the stability and optical gaps of SiC quantum dots, Nano Lett. 4(5), 801 (2004)ADSCrossRefGoogle Scholar
  29. 29.
    A. M. Rossi, T. E. Murphy, and V. Reipa, Ultraviolet photoluminescence from 6H silicon carbide nanoparticles, Appl. Phys. Lett. 92(25), 253112 (2008)ADSCrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Gang Peng (彭刚)
    • 1
  • Xiaoyan Yu (于晓燕)
    • 2
  • Yan-Lan He (何焰兰)
    • 1
  • Gong-Yi Li (李公义)
    • 1
  • Yi-Xing Liu (刘一星)
    • 1
  • Xinfang Zhang (张鑫方)
    • 1
  • Xue-Ao Zhang (张学骜)
    • 1
  1. 1.College of ScienceNational University of Defense TechnologyChangshaChina
  2. 2.School of Electronic & Communication EngineeringGuiyang UniversityGuiyangChina

Personalised recommendations