Frontiers of Physics

, 13:133401 | Cite as

New phenomena in laser-assisted scattering of an electron by a muon

Research article
  • 14 Downloads

Abstract

The scattering of an electron by a muon in the presence of a linearly polarized laser field is investigated in the first Born approximation. The theoretical results reveal the following: i) At medium and large scattering angles, many multiphoton processes occur during scattering, and these nonlinear phenomena may predict the resonant state of the electron and the muon formed in the collision process. ii) The photoabsorption (inverse bremsstrahlung) dominates the photoemission (bremsstrahlung), causing the cross section to increase. iii) When the laser polarization deviates from the incident direction, the lasermodified total cross section depends considerably on the azimuthal angle of the scattered electron. The dependence of the cross section on the field strength, polarization direction, and electron-impact energy are studied.

Keywords

laser-assisted scattering multiphoton processes nonlinear effect generalized Bessel function 

PACS numbers

34.50.Rk 34.80.Qb 12.20.-m 

Notes

Acknowledgments

This work was partially supported by the National Natural Science Foundation of China (NSFC) under Grant Nos. 11275186, 91024026, and FOM2014OF001 and the National Basic Research Program of China under Grant Nos. 2007CB925200 and 2010CB923301.

References

  1. 1.
    F. H. M. Faisal, Theory of Multiphoton Processes, New York: Plenum, 1987CrossRefGoogle Scholar
  2. 2.
    M. H. Mittleman, Introduction to the Theory of Laser-Atom Interactions, New York: Plenum, 1993CrossRefGoogle Scholar
  3. 3.
    M. V. Fedorov, Atomic and Free Electrons in a Strong Light Field, Singapore: World Scientific, 1997Google Scholar
  4. 4.
    P. Francken and C. J. Joachain, Theoretical study of electron–atom collisions in intense laser fields, J. Opt. Soc. Am. B 7(4), 554 (1990)ADSCrossRefGoogle Scholar
  5. 5.
    F. Ehlotzky, A. Jaron, and J. Z. Kaminski, Electron–atom collisions in a laser field, Phys. Rep. 297(2–3), 63 (1998)ADSCrossRefGoogle Scholar
  6. 6.
    F. Ehlotzky, Atomic phenomena in bichromatic laser fields, Phys. Rep. 345(4), 175 (2001)ADSCrossRefGoogle Scholar
  7. 7.
    H. M. Milchberg and R. R. Freeman, High-field interactions and short-wavelength generation, J. Opt. Soc. Am. B 13(2), 314 (1996)ADSCrossRefGoogle Scholar
  8. 8.
    D. D. Meyerhofer, High-intensity-laser-electron scattering, IEEE J. Quantum Electron. 33(11), 1935 (1997)ADSCrossRefGoogle Scholar
  9. 9.
    P. Panek, J. Z. Kaminski, and F. Ehlotzky, Laserinduced Compton scattering at relativistically high radiation powers, Phys. Rev. A 65(2), 022712 (2002)ADSCrossRefGoogle Scholar
  10. 10.
    A. I. Voroshilo, S. P. Roshchupkin, and V. N. Nedoreshta, Resonant scattering of photon by electron in the presence of the pulsed laser field, Laser Phys. 21(9), 1675 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    V. N. Nedoreshta, S. P. Roshchupkin, and A. I. Voroshilo, Nonresonant Compton scattering in an intense pulsed laser field, Laser Phys. 23(5), 055301 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    S. P. Roshchupkin, Resonant effects in collisions of relativistic electrons in the field of a light wave, Laser Phys. 6(5), 837 (1996)Google Scholar
  13. 13.
    C. Szymanowski, V. Véniard, R. Taïeb, A. Maquet, and C. H. Keitel, Mott scattering in strong laser fields, Phys. Rev. A 56(5), 3846 (1997)ADSCrossRefGoogle Scholar
  14. 14.
    C. Szymanowski, R. Taïeb, and A. Maquet, Laser-Assisted scattering of polarized electrons at high field intensities, Laser Phys. 8(1), 102 (1998)Google Scholar
  15. 15.
    O. I. Denisenko and S. P. Roshchupkin, Resonant scattering of an electron by a positron in the field of a light wave, Laser Phys. 9(5), 1108 (1999)Google Scholar
  16. 16.
    E. A. Padusenko, A. A. Lebed, and S. P. Roshchupkin, Resonant interference effect in scattering of an electron by an electron in the field of two pulsed laser waves, Universal Journal of Physics and Application 7(3), 274 (2013)Google Scholar
  17. 17.
    P. Panek, J. Z. Kaminski, and F. Ehlotzky, Analysis of resonances in Møller scattering in a laser field of relativistic radiation power, Phys. Rev. A 69(1), 013404 (2004)ADSCrossRefGoogle Scholar
  18. 18.
    S. S. Starodub and S. P. Roshchupkin, Interaction of the nonrelativistic electrons in the pulsed field of two laser waves, Eur. Phys. J. D 44(2), 401 (2007)ADSCrossRefGoogle Scholar
  19. 19.
    F. Ehlotzky, Sum rules in relativistic potential scattering in a strong laser field, Opt. Commun. 66(5–6), 265 (1988)ADSCrossRefGoogle Scholar
  20. 20.
    J. Z. Kaminski and F. Ehlotzky, Asymmetries and dark angular windows in relativistic free-free transitions in a powerful laser field, Phys. Rev. A 59(3), 2105 (1999)ADSCrossRefGoogle Scholar
  21. 21.
    P. Panek, J. Z. Kaminski, and F. Ehlotzky, Angular and polarization effects in relativistic potential scattering of electrons in a powerful laser field, Can. J. Phys. 77(8), 591 (1999)ADSCrossRefGoogle Scholar
  22. 22.
    M. M. Denisov and M. V. Fedorov, Bremsstrahlung effect on relativistic electrons in a strong radiation field, Sov. Phys. JETP 26, 779 (1968)ADSGoogle Scholar
  23. 23.
    S. P. Roshchupkin, The effect of a strong light field on the scattering of an ultrarelativistic electron by a nucleus, Zh. Eksp. Teor. Fiz. 109, 337 (1996)Google Scholar
  24. 24.
    C. Szymanowski, V. Veniard, R. Taïeb, A. Maquet, and C. H. Keitel, Mott scattering in strong laser fields, Phys. Rev. A 56(5), 3846 (1997)ADSCrossRefGoogle Scholar
  25. 25.
    C. Szymanowski and A. Maquet, Relativistic signatures in laser-assisted scattering at high field intensities, Opt. Express 2(7), 262 (1998)ADSCrossRefGoogle Scholar
  26. 26.
    S. M. Li, J. Berakdar, J. Chen, and Z. F. Zhou, Mott scattering in the presence of a linearly polarized laser field, Phys. Rev. A 67(6), 063409 (2003)ADSCrossRefGoogle Scholar
  27. 27.
    Y. Attaourti and B. Manaut, Comment on “Mott scattering in strong laser fields”? Phys. Rev. A 68(6), 067401 (2003)ADSCrossRefGoogle Scholar
  28. 28.
    B. Manaut, S. Taj, and Y. Attaourti, Mott scattering of polarized electrons in a strong laser field, Phys. Rev. A 71(4), 043401 (2005)ADSCrossRefMATHGoogle Scholar
  29. 29.
    V. N. Nedoreshta, A. I. Voroshilo, and S. P. Roshchupkin, Nonresonant scattering of an electron by a muon in the field of plane electromagnetic wave, Laser Phys. Lett. 4(12), 872 (2007)ADSCrossRefGoogle Scholar
  30. 30.
    V. N. Nedoreshta, A. I. Voroshilo, and S. P. Roshchupkin, Resonant scattering of an electron by a muon in the field of light wave, Eur. Phys. J. D 48(3), 451 (2008)ADSCrossRefGoogle Scholar
  31. 31.
    E. A. Padusenko, S. P. Roshchupkin, and A. I. Voroshilo, Nonresonant scattering of relativistic electron by relativistic muon in the pulsed light field, Laser Phys. Lett. 6(3), 242 (2009)ADSCrossRefGoogle Scholar
  32. 32.
    S. P. Roshchupkin, E. A. Padusenko, and A. I. Voroshilo, Quantum electrodynamics resonances in a pulsed laser field, Laser Phys. 22, 6 (2012)Google Scholar
  33. 33.
    S. P. Roshchupkin, A. A. Lebed’, and E. A. Padusenko, Nonresonant quantum electrodynamics processes in a pulsed laser field, Laser Phys. 22, 10 (2012)Google Scholar
  34. 34.
    A. A. Lebed’, E. A. Padusenko, and S. P. Roshchupkin, Resonant scattering of ultrarelativistic electrons in the strong field of a pulsed laser wave, Laser Phys. 26(2), 025302 (2016)ADSCrossRefGoogle Scholar
  35. 35.
    A. A. Lebed’, E. A. Padusenko, S. P. Roshchupkin, and V. V. Dubov, Parametric interference effect in nonresonant pair photoproduction on a nucleus in the field of two pulsed light waves, Phys. Rev. A 95(4), 043406 (2017)ADSCrossRefGoogle Scholar
  36. 36.
    A. I. Nikishov and V. I. Ritus, Quantum effects in the interaction of elementary particles with an intense electromagnetic field, Trudy FIAN 111, 5 (1979)Google Scholar
  37. 37.
    F. V. Bunkin and M. V. Fedorov, Bremsstrahlung in a strong radiation field, Zh. Eksp. Teor. Fiz. 49, 1215 (1965)Google Scholar
  38. 38.
    M. M. Denisov and M. V. Fedorov, Bremsstrahlung effect on relativistic electrons in a strong radiation field, Zh. Eksp. Teor. Fiz. 53, 1340 (1967)Google Scholar
  39. 39.
    M. V. Fedorov, An Electron in a Strong Light Field, Nauka, Moscow, 1991 (in Russian)Google Scholar
  40. 40.
    D. M. Volkov, On a class of solutions of the Dirac equation, Z. Phys. 94(3–4), 250 (1935)ADSGoogle Scholar
  41. 41.
    W. Greiner and J. Reinhardt, Quantum Electrodynamics, 4th Ed., Springer-Verlag, 2009MATHGoogle Scholar
  42. 42.
    E. Lötstedt and U. D. Jentschura, Recursive algorithm for arrays of generalized Bessel functions: Numerical access to Dirac–Volkov solutions, Phys. Rev. E 79(2), 026707 (2009)ADSCrossRefGoogle Scholar
  43. 43.
    H. J. Korsch, A. Klumpp, and D. Witthaut, On twodimensional Bessel functions, J. Phys. A 39(48), 14947 (2006)ADSMathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Modern PhysicsUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations