Frontiers of Physics

, 13:138107 | Cite as

Dissociation of liquid water on defective rutile TiO2 (110) surfaces using ab initio molecular dynamics simulations

  • Hui-Li Wang (王会丽)
  • Zhen-Peng Hu (胡振芃)
  • Hui Li (李晖)
Research article
Part of the following topical collections:
  1. Inorganic Two-Dimensional Nanomaterials


In order to obtain a comprehensive understanding of both thermodynamics and kinetics of water dissociation on TiO2, the reactions between liquid water and perfect and defective rutile TiO2 (110) surfaces were investigated using ab initio molecular dynamics simulations. The results showed that the free-energy barrier (~4.4 kcal/mol) is too high for a spontaneous dissociation of water on the perfect rutile (110) surface at a low temperature. The most stable oxygen vacancy (Vo1) on the rutile (110) surface cannot promote the dissociation of water, while other unstable oxygen vacancies can significantly enhance the water dissociation rate. This is opposite to the general understanding that Vo1 defects are active sites for water dissociation. Furthermore, we reveal that water dissociation is an exothermic reaction, which demonstrates that the dissociated state of the adsorbed water is thermodynamically favorable for both perfect and defective rutile (110) surfaces. The dissociation adsorption of water can also increase the hydrophilicity of TiO2.


ab initio molecular dynamics rutile (110) free energy barrier spontaneous reaction exothermic reaction 


  1. 1.
    A. Fujishima and K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature 238(5358), 37 (1972)ADSCrossRefGoogle Scholar
  2. 2.
    X. Chen, L. Liu, P. Y. Yu, and S. S. Mao, Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals, Science 331(6018), 746 (2011)ADSCrossRefGoogle Scholar
  3. 3.
    S. J. Tan, F. Hao, Y. F. Ji, Y. Wang, J. Zhao, A. D. Zhao, B. Wang, Y. Luo, J. L. Yang, and J. G. Hou, Observation of photocatalytic dissociation of water on terminal Ti sites of TiO2 (110)-1 x 1 Surface, J. Am. Chem. Soc. 134(24), 9978 (2012)CrossRefGoogle Scholar
  4. 4.
    J. H. Liang, N. Wang, Q. X. Zhang, B. F. Liu, X. B. Kong, C. C. Wei, D. K. Zhang, B. J. Yan, Y. Zhao, and X. D. Zhang, Exploring the mechanism of a pure and amorphous black-blue TiO2:H thin film as a photoanode in water splitting, Nano Energy 42, 151 (2017)CrossRefGoogle Scholar
  5. 5.
    V. E. Henrich and P. A. Cox, The Surface Science of Metal Oxides, Cambridge: Cambridge University Press, 1994Google Scholar
  6. 6.
    H. J. Freund, Introductory lecture: Oxide surfaces, Faraday Discuss. 114, 1 (1999)ADSCrossRefGoogle Scholar
  7. 7.
    M. Ramamoorthy, D. Vanderbilt, and R. D. King-Smith, First-principles calculations of the energetics of stoichiometric TiO2 surfaces, Phys. Rev. B 49(23), 16721 (1994)ADSCrossRefGoogle Scholar
  8. 8.
    U. Diebold, The surface science of titanium dioxide, Surf. Sci. Rep. 48(5–8), 53 (2003)ADSCrossRefGoogle Scholar
  9. 9.
    M. A. Henderson, An HREELS and TPD study of water on TiO2 (110): the extent of molecular versus dissociative adsorption, Surf. Sci. 355(1–3), 151 (1996)ADSCrossRefGoogle Scholar
  10. 10.
    I. M. Brookes, C. A. Muryn, and G. Thornton, Imaging water dissociation on TiO2 (110), Phys. Rev. Lett. 87(26), 266103 (2001)ADSCrossRefGoogle Scholar
  11. 11.
    R. Schaub, R. Thostrup, N. Lopez, E. Laegsgaard, I. Stensgaard, J. K. Norskov, and F. Besenbacher, Oxygen vacancies as active sites for water dissociation on rutile TiO2 (110), Phys. Rev. Lett. 87(26), 266104 (2001)ADSCrossRefGoogle Scholar
  12. 12.
    O. Bikondoa, C. L. Pang, R. Ithnin, C. A. Muryn, H. Onishi, and G. Thornton, Direct visualization of defect-mediated dissociation of water on TiO2 (110), Nat. Mater. 5(3), 189 (2006)ADSCrossRefGoogle Scholar
  13. 13.
    S. Wendt, J. Matthiesen, R. Schaub, E. K. Vestergaard, E. Lægsgaard, F. Besenbacher, and B. Hammer, Formation and splitting of paired hydroxyl groups on reduced TiO2 (110), Phys. Rev. Lett. 96(6), 066107 (2006)ADSCrossRefGoogle Scholar
  14. 14.
    M. A. Henderson, A surface science perspective on TiO2 photocatalysis, Surf. Sci. Rep. 66(6–7), 185 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    C. L. Pang, R. Lindsay, and G. Thornton, Structure of clean and adsorbate-covered single-crystal rutile TiO2 surfaces., Chem. Rev. 113(6), 3887 (2013)CrossRefGoogle Scholar
  16. 16.
    M. B. Hugenschmidt, L. Gamble, and C. T. Campbell, The interaction of H2O with a TiO2 (110) surface, Surf. Sci. 302(3), 329 (1994)ADSCrossRefGoogle Scholar
  17. 17.
    L. E. Walle, A. Borg, P. Uvdal, and A. Sandell, Experimental evidence for mixed dissociative and molecular adsorption of water on a rutile TiO2 (110) surface without oxygen vacancies, Phys. Rev. B 80(23), 235436 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    H. H. Kristoffersen, J. Ø. Hansen, U. Martinez, Y. Y. Wei, J. Matthiesen, R. Streber, R. Bechstein, E. Lægsgaard, F. Besenbacher, B. Hammer, and S. Wendt, Role of steps in the dissociative adsorption of water on rutile TiO2 (110), Phys. Rev. Lett. 110(14), 146101 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    E. V. Stefanovich and T. N. Truong, Ab initio study of water adsorption on TiO2 (110): molecular adsorption versus dissociative chemisorption, Chem. Phys. Lett. 299(6), 623 (1999)ADSCrossRefGoogle Scholar
  20. 20.
    W. Langel, Car-Parrinello simulation of H2O dissociation on rutile, Surf. Sci. 496(1–2), 141 (2002)ADSCrossRefGoogle Scholar
  21. 21.
    P. J. D. Lindan, N. M. Harrison, J. M. Holender, and M. J. Gillan, First-principles molecular dynamics simulation of water dissociation on TiO2 (110), Chem. Phys. Lett. 261(3), 246 (1996)ADSCrossRefGoogle Scholar
  22. 22.
    P. J. D. Lindan, N. M. Harrison, and M. J. Gillan, Mixed dissociative and molecular adsorption of water on the rutile (110) surface, Phys. Rev. Lett. 80(4), 762 (1998)ADSCrossRefGoogle Scholar
  23. 23.
    L. E. Walle, D. Ragazzon, A. Borg, P. Uvdal, and A. Sandell, Competing water dissociation channels on rutile TiO2 (110), Surf. Sci. 621, 77 (2014)ADSCrossRefGoogle Scholar
  24. 24.
    W. H. Zhang, J. L. Yang, Y. Luo, S. Monti, and V. Carravetta, Quantum molecular dynamics study of water on TiO2 (110) surface, J. Chem. Phys. 129(6), 064703 (2008)ADSCrossRefGoogle Scholar
  25. 25.
    L. A. Harris and A. A. Quong, Molecular chemisorption as the theoretically preferred pathway for water adsorption on ideal rutile TiO2 (110), Phys. Rev. Lett. 93(8), 086105 (2004)ADSCrossRefGoogle Scholar
  26. 26.
    C. Zhang and P. J. D. Lindan, Multilayer water adsorption on rutile TiO2 (110): A first-principles study, J. Chem. Phys. 118(10), 4620 (2003)ADSCrossRefGoogle Scholar
  27. 27.
    N. Kumar, S. Neogi, P. R. C. Kent, A. V. Bandura, J. D. Kubicki, D. J. Wesolowski, D. Cole, and J. O. Sofo, Hydrogen bonds and vibrations of water on (110) rutile, J. Phys. Chem. C 113(31), 13732 (2009)CrossRefGoogle Scholar
  28. 28.
    L. M. Liu, C. J. Zhang, G. Thornton, and A. Michaelides, Structure and dynamics of liquid water on rutile TiO2 (110), Phys. Rev. B 82(16), 161415 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    H. Hussain, G. Tocci, T. Woolcot, X. Torrelles, C. L. Pang, D. S. Humphrey, C. M. Yim, D. C. Grinter, G. Cabailh, O. Bikondoa, R. Lindsay, J. Zegenhagen, A. Michaelides, and G. Thornton, Structure of a model TiO2 photocatalytic interface, Nat. Mater. 16(4), 461 (2017)ADSCrossRefGoogle Scholar
  30. 30.
    J. VandeVondele, M. Krack, F. Mohamed, M. Parrinello, T. Chassaing, and J. Hutter, Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach, Comput. Phys. Commun. 167(2), 103 (2005)ADSCrossRefGoogle Scholar
  31. 31.
    A. D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior, Phys. Rev. A 38(6), 3098 (1988)ADSCrossRefGoogle Scholar
  32. 32.
    C. Lee, W. Yang, and R. G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B 37(2), 785 (1988)ADSCrossRefGoogle Scholar
  33. 33.
    A. R. Khoei, P. Ghahremani, M. J. Abdolhosseini Qomi, and P. Banihashemi, Stability and sizedependency of temperature-related Cauchy-Born hypothesis, Comput. Mater. Sci. 50(5), 1731 (2011)CrossRefGoogle Scholar
  34. 34.
    J. Oviedo, M. A. San Miguel, and J. F. Sanz, Oxygen vacancies on TiO2 (110) from first principles calculations, J. Chem. Phys. 121(15), 7427 (2004)ADSCrossRefGoogle Scholar
  35. 35.
    L. A. Harris and A. A. Quong, Molecular chemisorption as the theoretically preferred pathway for water adsorption on ideal rutile TiO2 (110), Phys. Rev. Lett. 93, 086105 (2004)ADSCrossRefGoogle Scholar
  36. 36.
    P. J. D. Lindan and C. Zhang, Exothermic water dissociation on the rutile TiO2 (110) surface, Phys. Rev. B 72, 075439 (2005)ADSCrossRefGoogle Scholar
  37. 37.
    A. Laio and M. Parrinello, Escaping free-energy minima, PNAS 99(20), 12562 (2002)ADSCrossRefGoogle Scholar
  38. 38.
    D. Branduardi, G. Bussi, and M. Parrinello, Metadynamics with adaptive Gaussians, J. Chem. Theory Comput. 8(7), 2247 (2012)CrossRefGoogle Scholar
  39. 39.
    N. G. Petrik and G. A. Kimmel, Reaction kinetics of water molecules with oxygen vacancies on rutile TiO2 (110), J. Phys. Chem. C 119(40), 23059 (2015)CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Hui-Li Wang (王会丽)
    • 1
    • 3
  • Zhen-Peng Hu (胡振芃)
    • 1
  • Hui Li (李晖)
    • 2
  1. 1.School of PhysicsNankai UniversityTianjinChina
  2. 2.Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijingChina
  3. 3.Institute of PhysicsChinese Academy of SciencesBeijingChina

Personalised recommendations