Skip to main content
Log in

Interfacial properties of black phosphorus/transition metal carbide van der Waals heterostructures

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Owing to its outstanding electronic properties, black phosphorus (BP) is considered as a promising material for next-generation optoelectronic devices. In this work, devices based on BP/MXene (Zrn+1C n T2, T = O, F, OH, n = 1, 2) van der Waals (vdW) heterostructures are designed via first-principles calculations. Zrn+1C n T2 compositions with appropriate work functions lead to the formation of Ohmic contact with BP in the vertical direction. Low Schottky barriers are found along the lateral direction in BP/Zr2CF2, BP/Zr2CO2H2, BP/Zr3C2F2, and BP/Zr3C2O2H2 bilayers, and BP/Zr3C2O2 even exhibits Ohmic contact behavior. BP/Zr2CO2 is a semiconducting heterostructure with type-II band alignment, which facilitates the separation of electron-hole pairs. The band structure of BP/Zr2CO2 can be effectively tuned via a perpendicular electric field, and BP is predicted to undergo a transition from donor to acceptor at a 0.4 V/Å electric field. The versatile electronic properties of the BP/MXene heterostructures examined in this work highlight their promising potential for applications in electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, and P. D. Ye, Phosphorene: An unexplored 2D semiconductor with a high hole mobility, ACS Nano 8(4), 4033 (2014)

    Article  Google Scholar 

  2. L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, Black phosphorus field-effect transistors, Nat. Nanotechnol. 9(5), 372 (2014)

    Article  ADS  Google Scholar 

  3. S. Das, W. Zhang, M. Demarteau, A. Hoffmann, M. Dubey, and A. Roelofs, Tunable transport gap in phosphorene, Nano Lett. 14(10), 5733 (2014)

    Article  ADS  Google Scholar 

  4. Y. Pan, Y. Wang, M. Ye, R. Quhe, H. Zhong, Z. Song, X. Peng, D. Yu, J. Yang, J. Shi, and J. Lu, Monolayer phosphorene–metal contacts, Chem. Mater. 28(7), 2100 (2016)

    Article  Google Scholar 

  5. R. Quhe, Y. Wang, M. Ye, Q. Zhang, J. Yang, P. Lu, M. Lei, and J. Lu, Black phosphorus transistors with van der Waals-type electrical contacts, Nanoscale 9(37), 14047 (2017)

    Article  Google Scholar 

  6. J. E. Padilha, A. Fazzio, and A. J. R. da Silva, van der Waals heterostructure of phosphorene and graphene: Tuning the Schottky barrier and doping by electrostatic gating, Phys. Rev. Lett. 114(6), 066803 (2015)

    Article  ADS  Google Scholar 

  7. S. Y. Lee, W. S. Yun, and J. D. Lee, New method to determine the Schottky barrier in few-layer black phosphorus metal contacts, ACS Appl. Mater. Interfaces 9(8), 7873 (2017)

    Article  Google Scholar 

  8. M. Farmanbar and G. Brocks, Controlling the Schottky barrier at MoS2/metal contacts by inserting a BN monolayer, Phys. Rev. B 91(16), 161304 (2015)

    Article  ADS  Google Scholar 

  9. T. Musso, P. V. Kumar, A. S. Foster, and J. C. Grossman, Graphene oxide as a promising hole injection layer for MoS2-based electronic devices, ACS Nano 8(11), 11432 (2014)

    Article  Google Scholar 

  10. S. McDonnell, A. Azcatl, R. Addou, C. Gong, C. Battaglia, S. Chuang, K. Cho, A. Javey, and R. M. Wallace, Hole contacts on transition metal dichalcogenides: Interface chemistry and band alignments, ACS Nano 8(6), 6265 (2014)

    Article  Google Scholar 

  11. L. Huang, B. Li, M. Zhong, Z. Wei, and J. Li, Tunable Schottky barrier at MoSe2/metal interfaces with a buffer layer, J. Phys. Chem. C 121(17), 9305 (2017)

    Article  Google Scholar 

  12. Y. Liu, P. Stradins, and S. H. Wei, Van der Waals metalsemiconductor junction: Weak Fermi level pinning enables effective tuning of Schottky barrier, Sci. Adv. 2(4), e1600069 (2016)

    Article  ADS  Google Scholar 

  13. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306(5696), 666 (2004)

    Article  ADS  Google Scholar 

  14. M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, and M. W. Barsoum, Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2, Adv. Mater. 23(37), 4248 (2011)

    Article  Google Scholar 

  15. M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu, L. Hultman, Y. Gogotsi, and M. W. Barsoum, Twodimensional transition metal carbides, ACS Nano 6(2), 1322 (2012)

    Article  Google Scholar 

  16. M. Naguib, J. Halim, J. Lu, K. M. Cook, L. Hultman, Y. Gogotsi, and M. W. Barsoum, New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries, J. Am. Chem. Soc. 135(43), 15966 (2013)

    Article  Google Scholar 

  17. J. Zhou, X. Zha, X. Zhou, F. Chen, G. Gao, S. Wang, C. Shen, T. Chen, C. Zhi, P. Eklund, S. Du, J. Xue, W. Shi, Z. Chai, and Q. Huang, Synthesis and electrochemical properties of two-dimensional hafnium carbide, ACS Nano 11(4), 3841 (2017)

    Article  Google Scholar 

  18. X. H. Zha, J. Zhou, Y. Zhou, Q. Huang, J. He, J. S. Francisco, K. Luo, and S. Du, Promising electron mobility and high thermal conductivity in Sc2CT2 (T= F, OH) MXenes, Nanoscale 8(11), 6110 (2016)

    Article  ADS  Google Scholar 

  19. X. Zhang, X. Zhao, D. Wu, Y. Jing, and Z. Zhou, High and anisotropic carrier mobility in experimentally possible Ti2CO2 (MXene) monolayers and nanoribbons, Nanoscale 7(38), 16020 (2015)

    Article  ADS  Google Scholar 

  20. Z. Guo, J. Zhou, L. Zhu, and Z. Sun, MXene: A promising photocatalyst for water splitting, J. Mater. Chem. A 4(29), 11446 (2016)

    Article  Google Scholar 

  21. M. Khazaei, M. Arai, T. Sasaki, C. Y. Chung, N. S. Venkataramanan, M. Estili, Y. Sakka, and Y. Kawazoe, Novel electronic and magnetic properties of twodimensional transition metal carbides and nitrides, Adv. Funct. Mater. 23(17), 2185 (2013)

    Article  Google Scholar 

  22. J. Xu, J. Shim, J.H. Park, and S. Lee, MXene electrode for the integration of WSe2 and MoS2 field effect transistors, Adv. Funct. Mater. 26(29), 5328 (2016)

    Article  Google Scholar 

  23. Y. Liu, H. Xiao, and W. A. III Goddard, Schottkybarrier-free contacts with two-dimensional semiconductors by surface-engineered MXenes, J. Am. Chem. Soc. 138(49), 15853 (2016)

    Article  Google Scholar 

  24. Y. Cai, G. Zhang, and Y. W. Zhang, Electronic properties of phosphorene/graphene and phosphorene/ hexagonal boron nitride heterostructures, J. Phys. Chem. C 119(24), 13929 (2015)

    Article  Google Scholar 

  25. Y. Deng, Z. Luo, N. J. Conrad, H. Liu, Y. Gong, S. Najmaei, P. M. Ajayan, J. Lou, X. Xu, and P. D. Ye, Black phosphorus–monolayer MoS2 van der Waals heterojunction p–n diode, ACS Nano 8(8), 8292 (2014)

    Article  Google Scholar 

  26. G. Kresse and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6(1), 15 (1996)

    Article  Google Scholar 

  27. G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)

    Article  ADS  Google Scholar 

  28. P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50(24), 17953 (1994)

    Article  ADS  Google Scholar 

  29. G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59(3), 1758 (1999)

    Article  ADS  Google Scholar 

  30. J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)

    Article  ADS  Google Scholar 

  31. M. Dion, H. Rydberg, E. Schröder, D. C. Langreth, and B. I. Lundqvist, Van der Waals density functional for general geometries, Phys. Rev. Lett. 92(24), 246401 (2004)

    Article  ADS  Google Scholar 

  32. J. Klimeš, D. R. Bowler, and A. Michaelides, Van der Waals density functionals applied to solids, Phys. Rev. B 83(19), 195131 (2011)

    Article  ADS  Google Scholar 

  33. J. Tersoff, Schottky barrier heights and the continuum of gap states, Phys. Rev. Lett. 52(6), 465 (1984)

    Article  ADS  Google Scholar 

  34. J. Tersoff, Theory of semiconductor heterojunctions: The role of quantum dipoles, Phys. Rev. B 30(8), 4874 (1984)

    Article  ADS  Google Scholar 

  35. C. A. Mead and W. G. Spitzer, Fermi level position at metal-semiconductor interfaces, Phys. Rev. 134(3A), A713 (1964)

    Article  ADS  Google Scholar 

  36. Y. Pan, Y. Dan, Y. Wang, M. Ye, H. Zhang, R. Quhe, X. Zhang, J. Li, W. Guo, L. Yang, and J. Lu, Schottky barriers in bilayer phosphorene transistors, ACS Appl. Mater. Interfaces 9(14), 12694 (2017)

    Article  Google Scholar 

  37. X. Zhang, Y. Pan, M. Ye, R. Quhe, Y. Wang, Y. Guo, H. Zhang, Y. Dan, Z. Song, J. Li, J. Yang, W. Guo, and J. Lu, Three-layer phosphorene-metal interfaces, Nano Res. 11(2), 707 (2018)

    Article  Google Scholar 

  38. M. Khazaei, M. Arai, T. Sasaki, A. Ranjbar, Y. Liang, and S. Yunoki, OH-terminated two-dimensional transition metal carbides and nitrides as ultralow work function materials, Phys. Rev. B 92(7), 075411 (2015)

    Article  ADS  Google Scholar 

  39. Y. Wang, R. X. Yang, R. Quhe, H. Zhong, L. Cong, M. Ye, Z. Ni, Z. Song, J. Yang, J. Shi, J. Li, and J. Lu, Does p-type ohmic contact exist in WSe2–metal interfaces? Nanoscale 8(2), 1179 (2016)

    Article  ADS  Google Scholar 

  40. G. H. Lee, S. Kim, S. H. Jhi, and H. J. Lee, Ultimately short ballistic vertical graphene Josephson junctions, Nat. Commun. 6(1), 6181 (2015)

    Article  Google Scholar 

  41. X. Ji, J. Zhang, Y. Wang, H. Qian, and Z. Yu, A theoretical model for metal–graphene contact resistance using a DFT–NEGF method, Phys. Chem. Chem. Phys. 15(41), 17883 (2013)

    Article  Google Scholar 

  42. Y. Cai, G. Zhang, and Y. W. Zhang, Layer-dependent band alignment and work function of few-layer phosphorene, Sci. Rep. 4(1), 6677 (2015)

    Article  Google Scholar 

  43. J. Y. Marzin, M. N. Charasse, and B. Sermage, Optical investigation of a new type of valence-band configuration in InxGa1-xAs-GaAs strained superlattices, Phys. Rev. B 31(12), 8298 (1985)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenyu Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, H., Li, Z. Interfacial properties of black phosphorus/transition metal carbide van der Waals heterostructures. Front. Phys. 13, 138103 (2018). https://doi.org/10.1007/s11467-018-0759-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-018-0759-1

Keywords

Navigation