Penta-P2X (X=C, Si) monolayers as wide-bandgap semiconductors: A first principles prediction


By means of density functional theory computations, we predicted two novel two-dimensional (2D) nanomaterials, namely P2X (X=C, Si) monolayers with pentagonal configurations. Their structures, stabilities, intrinsic electronic, and optical properties as well as the effect of external strain to the electronic properties have been systematically examined. Our computations showed that these P2C and P2Si monolayers have rather high thermodynamic, kinetic, and thermal stabilities, and are indirect semiconductors with wide bandgaps (2.76 eV and 2.69 eV, respectively) which can be tuned by an external strain. These monolayers exhibit high absorptions in the UV region, but behave as almost transparent layers for visible light in the electromagnetic spectrum. Their high stabilities and exceptional electronic and optical properties suggest them as promising candidates for future applications in UV-light shielding and antireflection layers in solar cells.

This is a preview of subscription content, log in to check access.


  1. 1.

    K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306(5696), 666 (2004)

    ADS  Article  Google Scholar 

  2. 2.

    Q. Tang and Z. Zhou, Graphene-analogous lowdimensional materials, Prog. Mater. Sci. 58(8), 1244 (2013)

    Article  Google Scholar 

  3. 3.

    J. J. Zhao, H. S. Liu, Z. M. Yu, R. G. Quhe, S. Zhou, Y. Y. Wang, C. C. Liu, H. X. Zhong, N. N. Han, J. Lu, Y. G. Yao, and K. H. Wu, Rise of silicene: A competitive 2D material, Prog. Mater. Sci. 83, 24 (2016)

    Article  Google Scholar 

  4. 4.

    K. S. Novoselov, A. Mishchenko, A. Carvalho, and A. H. Castro Neto, 2D materials and van der Waals heterostructures, Science 353(6298), aac9439 (2016)

    Article  Google Scholar 

  5. 5.

    S. Balendhran, S. Walia, H. Nili, S. Sriram, and M. Bhaskaran, Elemental analogues of graphene: Silicene, germanene, stanene, and phosphorene, Small 11(6), 640 (2015)

    Google Scholar 

  6. 6.

    M. Xu, T. Liang, M. Shi, and H. Chen, Graphenelike two-dimensional materials, Chem. Rev. 113(5), 3766 (2013)

    Article  Google Scholar 

  7. 7.

    S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutierrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, Progress, challenges, and opportunities in two-dimensional materials beyond graphene, ACS Nano 7(4), 2898 (2013)

    Article  Google Scholar 

  8. 8.

    A. Molle, J. Goldberger, M. Houssa, Y. Xu, S. C. Zhang, and D. Akinwande, Buckled two-dimensional Xene sheets, Nat. Mater. 16(2), 163 (2017)

    ADS  Article  Google Scholar 

  9. 9.

    G. G. Guzmán-Verri and L. C. Lew Yan Voon, Electronic structure of silicon-based nanostructures, Phys. Rev. B 76(7), 075131 (2007)

    ADS  Article  Google Scholar 

  10. 10.

    X. Yu, S. Zhang, H. Zeng, and Q. J. Wang, Lateral black phosphorene P–N junctions formed via chemical doping for high performance near-infrared photodetector, Nano Energy 25, 34 (2016)

    Article  Google Scholar 

  11. 11.

    M. Xie, S. Zhang, B. Cai, Y. Huang, Y. Zou, B. Guo, Y. Gu, and H. Zeng, A promising two-dimensional solar cell donor: Black arsenic–phosphorus monolayer with 1.54 eV direct bandgap and mobility exceeding 14000 cm2. v-1. s-1 Nano Energy 28, 433 (2016)

    Article  Google Scholar 

  12. 12.

    J. Yang, Y. L. Jiang, L. J. Li, E. Muhire, and M. Z. Gao, High-performance photodetectors and enhanced photocatalysts of two-dimensional TiO2 nanosheets under UV light excitation, Nanoscale 8(15), 8170 (2016)

    ADS  Article  Google Scholar 

  13. 13.

    P. K. Kanaujia, and G. V. Prakash, Laser-induced microstructuring of two-dimensional layered inorganic–organic perovskites, Phys. Chem. Chem. Phys. 18(14), 9666 (2016)

    Article  Google Scholar 

  14. 14.

    G. Qin, Z. Qin, W. Z. Fang, L. C. Zhang, S. Y. Yue, Q. B. Yan, M. Hu, and G. Su, Diverse anisotropy of phonon transport in two-dimensional group Iv–Vi compounds: A comparative study, Nanoscale 8(21), 11306 (2016)

    ADS  Article  Google Scholar 

  15. 15.

    Y. Yang, S. Umrao, S. Lai, and S. Lee, Large-area highly conductive transparent two-dimensional Ti2CTx film, J. Phys. Chem. Lett. 8(4), 859 (2017)

    Article  Google Scholar 

  16. 16.

    Z. Tan, Y. Wu, H. Hong, J. Yin, J. Zhang, L. Lin, M. Wang, X. Sun, L. Sun, Y. Huang, K. Liu, Z. Liu, and H. Peng, Two-dimensional (C4H9NH3)2PbBr4 perovskite crystals for high-performance photodetector, J. Am. Chem. Soc. 138(51), 16612 (2016)

    Article  Google Scholar 

  17. 17.

    D. Yin, J. Feng, N. R. Jiang, R. Ma, Y. F. Liu, and H. B. Sun, Two-dimensional stretchable organic lightemitting devices with high efficiency, ACS Appl. Mater. Interfaces 8(45), 31166 (2016)

    Article  Google Scholar 

  18. 18.

    Y. Jing, X. Zhang, and Z. Zhou, Phosphorene: What can we know from computations? Wiley Interdiscip. Rev.: Comput. Mol. Sci. 6(1), 5 (2016)

    Google Scholar 

  19. 19.

    S. Zhang, M. Xie, F. Li, Z. Yan, Y. Li, E. Kan, W. Liu, Z. Chen, and H. Zeng, Semiconducting group 15 monolayers: A broad range of band gaps and high carrier mobilities, Angew. Chem. Int. Ed. 55(5), 1666 (2016)

    Article  Google Scholar 

  20. 20.

    L. Chen, C. C. Liu, B. Feng, X. He, P. Cheng, Z. Ding, S. Meng, Y. Yao, and K. Wu, Evidence for Dirac fermions in a honeycomb lattice based on silicon, Phys. Rev. Lett. 109(5), 056804 (2012)

    ADS  Article  Google Scholar 

  21. 21.

    K. Shehzad, Y. Xu, C. Gao, and X. Duan, Threedimensional macro-structures of two-dimensional nanomaterials, Chem. Soc. Rev. 45(20), 5541 (2016)

    Article  Google Scholar 

  22. 22.

    P. Z. Tang, P. C. Chen, W. D. Cao, H. Q. Huang, S. Cahangirov, L. D. Xian, Y. Xu, S. C. Zhang, W. H. Duan, and A. Rubio, Stable two-dimensional dumbbell stanene: A quantum spin Hall insulator, Phys. Rev. B 90(12), 121408 (2014)

    ADS  Article  Google Scholar 

  23. 23.

    S. Rachel and M. Ezawa, Giant magnetoresistance and perfect spin filter in silicene, germanene, and stanene, Phys. Rev. B 89(19), 195303 (2014)

    Article  Google Scholar 

  24. 24.

    Q. Tang, Z. Zhou, and Z. Chen, Innovation and discovery of graphene-like materials via density-functional theory computations, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 5(5), 360 (2015)

    Google Scholar 

  25. 25.

    X. Zhang, Z. Zhang, X. Zhao, D. Wu, and Z. Zhou, MnBx monolayers with quasi-planar hypercoordinate Mn atoms and unique magnetic and mechanical properties, FlatChem 4, 42 (2017)

    Article  Google Scholar 

  26. 26.

    L. Li, S. Z. Lu, J. Pan, Z. Qin, Y. Q. Wang, Y. Wang, G. Y. Cao, S. Du, and H. J. Gao, Buckled germanene formation on Pt(111), Adv. Mater. 26(28), 4820 (2014)

    Article  Google Scholar 

  27. 27.

    F. F. Zhu, W. J. Chen, Y. Xu, C. L. Gao, D. D. Guan, C. H. Liu, D. Qian, S. C. Zhang, and J. F. Jia, Epitaxial growth of two-dimensional stanene, Nat. Mater. 14(10), 1020 (2015)

    ADS  Article  Google Scholar 

  28. 28.

    H. S. Tsai, S. W. Wang, C. H. Hsiao, C. W. Chen, H. Ouyang, Y. L. Chueh, H. C. Kuo, and J. H. Liang, Direct synthesis and practical bandgap estimation of multilayer arsenene nanoribbons, Chem. Mater. 28(2), 425 (2016)

    Article  Google Scholar 

  29. 29.

    H. S. Tsai, C. W. Chen, C. H. Hsiao, H. Ouyang, and J. H. Liang, The advent of multilayer antimonene nanoribbons with room temperature orange light emission, Chem. Commun. 52(54), 8409 (2016)

    Article  Google Scholar 

  30. 30.

    J. Ji, X. Song, J. Liu, Z. Yan, C. Huo, S. Zhang, M. Su, L. Liao, W. Wang, Z. Ni, Y. Hao, and H. Zeng, Two-dimensional antimonene single crystals grown by van Der Waals epitaxy, Nat. Commun. 7, 13352 (2016)

    ADS  Article  Google Scholar 

  31. 31.

    S. Zhang, J. Zhou, Q. Wang, X. Chen, Y. Kawazoe, and P. Jena, Penta-graphene: A new carbon allotrope, Proc. Natl. Acad. Sci. USA 112(8), 2372 (2015)

    ADS  Article  Google Scholar 

  32. 32.

    A. Lopez-Bezanilla, and P. B. Littlewood, S–P-band inversion in a novel two-dimensional material, J. Phys. Chem. C 119(33), 19469 (2015)

    Article  Google Scholar 

  33. 33.

    S. Zhang, J. Zhou, Q. Wang, and P. Jena, Beyond graphitic carbon nitride: Nitrogen-rich penta-CN2 sheet, J. Phys. Chem. C 120(7), 3993 (2016)

    Article  Google Scholar 

  34. 34.

    F. Li, K. Tu, H. Zhang, and Z. Chen, Flexible structural and electronic properties of a pentagonal B2C monolayer via external strain: A computational investigation, Phys. Chem. Chem. Phys. 17(37), 24151 (2015)

    Article  Google Scholar 

  35. 35.

    H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, and P. D. Ye, Phosphorene: An unexplored 2D semiconductor with a high hole mobility, ACS Nano 8(4), 4033 (2014)

    Google Scholar 

  36. 36.

    L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, Black phosphorus field-effect transistors, Nat. Nanotechnol. 9(5), 372 (2014)

    ADS  Article  Google Scholar 

  37. 37.

    R. W. Keyes, The electrical properties of black phosphorus, Phys. Rev. 92(3), 580 (1953)

    ADS  Article  Google Scholar 

  38. 38.

    Y. Takao, H. Asahina, and A. Morita, Electronic structure of black phosphorus in tight binding approach, J. Phys. Soc. Jpn. 50(10), 3362 (1981)

    ADS  Article  Google Scholar 

  39. 39.

    D. Warschauer, Electrical and optical properties of crystalline black phosphorus, J. Appl. Phys. 34(7), 1853 (1963)

    ADS  Article  Google Scholar 

  40. 40.

    S. Narita, Y. Akahama, Y. Tsukiyama, K. Muro, S. Mori, S. Endo, M. Taniguchi, M. Seki, S. Suga, A. Mikuni, and H. Kanzaki, Electrical and optical properties of black phosphorus single crystals, Physica B + C 117–118, 422 (1983)

    Google Scholar 

  41. 41.

    Y. Maruyama, S. Suzuki, K. Kobayashi, and S. Tanuma, Synthesis and some properties of black phosphorus single crystals, Physica B + C 105(1–3), 99 (1981)

    ADS  Article  Google Scholar 

  42. 42.

    S. Zhang, Z. Yan, Y. Li, Z. Chen, and H. Zeng, Atomically thin arsenene and antimonene: Semimetalsemiconductor and indirect-direct band-gap transitions, Angew. Chem. Int. Ed. 54(10), 3112 (2015)

    Article  Google Scholar 

  43. 43.

    P. Ares, F. Aguilar-Galindo, D. Rodriguez-San-Miguel, D. A. Aldave, S. Diaz-Tendero, M. Alcami, F. Martin, J. Gomez-Herrero, and F. Zamora, Mechanical isolation of highly stable antimonene under ambient conditions, Adv. Mater. 28(30), 6332 (2016)

    Article  Google Scholar 

  44. 44.

    C. Gibaja, D. Rodriguez-San-Miguel, P. Ares, J. Gomez-Herrero, M. Varela, R. Gillen, J. Maultzsch, F. Hauke, A. Hirsch, G. Abellan, and F. Zamora, Few-layer antimonene by liquid-phase exfoliation, Angew. Chem. Int. Ed. 55(46), 14345 (2016)

    Article  Google Scholar 

  45. 45.

    P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, J. Luitz, and K. Schwarz, An augmented PlaneWave+ Local Orbitals Program for calculating crystal properties revised edition WIEN2k 13.1 (release 06/26/2013)

    Google Scholar 

  46. 46.

    J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)

    ADS  Article  Google Scholar 

  47. 47.

    H. J. Monkhorst and J. D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13(12), 5188 (1976)

    ADS  MathSciNet  Article  Google Scholar 

  48. 48.

    R. Abt, C. Ambrosch-Draxl, and P. Knoll, Optical response of high temperature superconductors by full potential LAPW band structure calculations, Physica B 194–196, 1451 (1994)

    Google Scholar 

  49. 49.

    X. Gonze and C. Lee, Dynamical matrices, born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory, Phys. Rev. B 55(16), 10355 (1997)

    ADS  Article  Google Scholar 

  50. 50.

    P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, et al., Quantum espresso: A modular and opensource software project for quantum simulations of materials, J. Phys.: Condens. Matter 21(39), 395502 (2009)

    Google Scholar 

  51. 51.

    N. Troullier and J. L. Martins, Efficient pseudopotentials for plane-wave calculations, Phys. Rev. B 43(3), 1993 (1991)

    ADS  Article  Google Scholar 

  52. 52.

    B. Delley, An all-electron numerical-method for solving the local density functional for polyatomic-molecules, J. Chem. Phys. 92(1), 508 (1990)

    ADS  Article  Google Scholar 

  53. 53.

    B. Delley, From molecules to solids with the Dmol3 approach, J. Chem. Phys. 113(18), 7756 (2000)

    ADS  Article  Google Scholar 

  54. 54.

    G. J. Martyna, M. L. Klein, and M. Tuckerman, Nosé–Hoover chains: The canonical ensemble via continuous dynamics, J. Chem. Phys. 97(4), 2635 (1992)

    ADS  Article  Google Scholar 

  55. 55.

    H. Shin, S. Kang, J. Koo, H. Lee, J. Kim, and Y. Kwon, Cohesion energetics of carbon allotropes: Quantum Monte Carlo study, J. Chem. Phys. 140(11), 114702 (2014)

    ADS  Article  Google Scholar 

  56. 56.

    X. L. Sheng, Q. B. Yan, F. Ye, Q. R. Zheng, and G. Su, T-carbon: A novel carbon allotrope, Phys. Rev. Lett. 106(15), 155703 (2011)

    ADS  Article  Google Scholar 

  57. 57.

    J. Y. Zhang, R. Wang, X. Zhu, A. Pan, C. Han, X. Li, D. Zhao, C. Ma, W. Wang, H. Su, and C. Niu, Pseudo-topotactic conversion of carbon nanotubes to Tcarbon nanowires under picosecond laser irradiation in methanol, Nat. Commun. 8(1), 683 (2017)

    ADS  Article  Google Scholar 

  58. 58.

    N. Drummond, V. Zolyomi, and V. I. Fal’ko, Electrically tunable band gap in silicene, Phys. Rev. B 85(7), 075423 (2012)

    ADS  Article  Google Scholar 

  59. 59.

    Y. Wang, F. Li, Y. Li, and Z. Chen, Semi-metallic Be5C2 monolayer global minimum with quasi-planar pentacoordinate carbons and negative Poisson’s ratio, Nat. Commun. 7, 11488 (2016)

    ADS  Article  Google Scholar 

  60. 60.

    G. Qin, Q. B. Yan, Z. Qin, S. Y. Yue, M. Hu, and G. Su, Anisotropic intrinsic lattice thermal conductivity of phosphorene from first principles, Phys. Chem. Chem. Phys. 17(7), 4854 (2015)

    Article  Google Scholar 

  61. 61.

    L. F. Huang, P. L. Gong, and Z. Zeng, Phonon properties, thermal expansion, and thermomechanics of silicene and germanene, Phys. Rev. B 91(20), 205433 (2015)

    Google Scholar 

  62. 62.

    Molina-Sánchez and L. Wirtz, Phonons in single-layer and few-layer MoS2 and WS2, Phys. Rev. B 84(15), 155413 (2011)

    ADS  Article  Google Scholar 

  63. 63.

    J. Heyd, G. E. Scuseria, and M. Ernzerhof, Hybrid functionals based on a screened coulomb potential, J. Chem. Phys. 118(18), 8207 (2003)

    ADS  Article  Google Scholar 

  64. 64.

    H. Zhang, D. Wu, Q. Tang, L. Liu, and Z. Zhou, Zno–Gan heterostructured nanosheets for solar energy harvesting: Computational studies based on hybrid density functional theory, J. Mater. Chem. A Mater. Energy Sustain. 1(6), 2231 (2013)

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Mosayeb Naseri.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Naseri, M., Lin, S., Jalilian, J. et al. Penta-P2X (X=C, Si) monolayers as wide-bandgap semiconductors: A first principles prediction. Front. Phys. 13, 138102 (2018).

Download citation


  • 2D materials
  • density functional calculations
  • wide bandgap semiconductors