Frontiers of Physics

, 13:138102 | Cite as

Penta-P2X (X=C, Si) monolayers as wide-bandgap semiconductors: A first principles prediction

  • Mosayeb NaseriEmail author
  • Shiru Lin
  • Jaafar Jalilian
  • Jinxing Gu
  • Zhongfang Chen
Research article
Part of the following topical collections:
  1. Inorganic Two-Dimensional Nanomaterials


By means of density functional theory computations, we predicted two novel two-dimensional (2D) nanomaterials, namely P2X (X=C, Si) monolayers with pentagonal configurations. Their structures, stabilities, intrinsic electronic, and optical properties as well as the effect of external strain to the electronic properties have been systematically examined. Our computations showed that these P2C and P2Si monolayers have rather high thermodynamic, kinetic, and thermal stabilities, and are indirect semiconductors with wide bandgaps (2.76 eV and 2.69 eV, respectively) which can be tuned by an external strain. These monolayers exhibit high absorptions in the UV region, but behave as almost transparent layers for visible light in the electromagnetic spectrum. Their high stabilities and exceptional electronic and optical properties suggest them as promising candidates for future applications in UV-light shielding and antireflection layers in solar cells.


2D materials density functional calculations wide bandgap semiconductors 


  1. 1.
    K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306(5696), 666 (2004)ADSCrossRefGoogle Scholar
  2. 2.
    Q. Tang and Z. Zhou, Graphene-analogous lowdimensional materials, Prog. Mater. Sci. 58(8), 1244 (2013)CrossRefGoogle Scholar
  3. 3.
    J. J. Zhao, H. S. Liu, Z. M. Yu, R. G. Quhe, S. Zhou, Y. Y. Wang, C. C. Liu, H. X. Zhong, N. N. Han, J. Lu, Y. G. Yao, and K. H. Wu, Rise of silicene: A competitive 2D material, Prog. Mater. Sci. 83, 24 (2016)CrossRefGoogle Scholar
  4. 4.
    K. S. Novoselov, A. Mishchenko, A. Carvalho, and A. H. Castro Neto, 2D materials and van der Waals heterostructures, Science 353(6298), aac9439 (2016)CrossRefGoogle Scholar
  5. 5.
    S. Balendhran, S. Walia, H. Nili, S. Sriram, and M. Bhaskaran, Elemental analogues of graphene: Silicene, germanene, stanene, and phosphorene, Small 11(6), 640 (2015)Google Scholar
  6. 6.
    M. Xu, T. Liang, M. Shi, and H. Chen, Graphenelike two-dimensional materials, Chem. Rev. 113(5), 3766 (2013)CrossRefGoogle Scholar
  7. 7.
    S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutierrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, Progress, challenges, and opportunities in two-dimensional materials beyond graphene, ACS Nano 7(4), 2898 (2013)CrossRefGoogle Scholar
  8. 8.
    A. Molle, J. Goldberger, M. Houssa, Y. Xu, S. C. Zhang, and D. Akinwande, Buckled two-dimensional Xene sheets, Nat. Mater. 16(2), 163 (2017)ADSCrossRefGoogle Scholar
  9. 9.
    G. G. Guzmán-Verri and L. C. Lew Yan Voon, Electronic structure of silicon-based nanostructures, Phys. Rev. B 76(7), 075131 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    X. Yu, S. Zhang, H. Zeng, and Q. J. Wang, Lateral black phosphorene P–N junctions formed via chemical doping for high performance near-infrared photodetector, Nano Energy 25, 34 (2016)CrossRefGoogle Scholar
  11. 11.
    M. Xie, S. Zhang, B. Cai, Y. Huang, Y. Zou, B. Guo, Y. Gu, and H. Zeng, A promising two-dimensional solar cell donor: Black arsenic–phosphorus monolayer with 1.54 eV direct bandgap and mobility exceeding 14000 cm2. v-1. s-1 Nano Energy 28, 433 (2016)CrossRefGoogle Scholar
  12. 12.
    J. Yang, Y. L. Jiang, L. J. Li, E. Muhire, and M. Z. Gao, High-performance photodetectors and enhanced photocatalysts of two-dimensional TiO2 nanosheets under UV light excitation, Nanoscale 8(15), 8170 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    P. K. Kanaujia, and G. V. Prakash, Laser-induced microstructuring of two-dimensional layered inorganic–organic perovskites, Phys. Chem. Chem. Phys. 18(14), 9666 (2016)CrossRefGoogle Scholar
  14. 14.
    G. Qin, Z. Qin, W. Z. Fang, L. C. Zhang, S. Y. Yue, Q. B. Yan, M. Hu, and G. Su, Diverse anisotropy of phonon transport in two-dimensional group Iv–Vi compounds: A comparative study, Nanoscale 8(21), 11306 (2016)ADSCrossRefGoogle Scholar
  15. 15.
    Y. Yang, S. Umrao, S. Lai, and S. Lee, Large-area highly conductive transparent two-dimensional Ti2CTx film, J. Phys. Chem. Lett. 8(4), 859 (2017)CrossRefGoogle Scholar
  16. 16.
    Z. Tan, Y. Wu, H. Hong, J. Yin, J. Zhang, L. Lin, M. Wang, X. Sun, L. Sun, Y. Huang, K. Liu, Z. Liu, and H. Peng, Two-dimensional (C4H9NH3)2PbBr4 perovskite crystals for high-performance photodetector, J. Am. Chem. Soc. 138(51), 16612 (2016)CrossRefGoogle Scholar
  17. 17.
    D. Yin, J. Feng, N. R. Jiang, R. Ma, Y. F. Liu, and H. B. Sun, Two-dimensional stretchable organic lightemitting devices with high efficiency, ACS Appl. Mater. Interfaces 8(45), 31166 (2016)CrossRefGoogle Scholar
  18. 18.
    Y. Jing, X. Zhang, and Z. Zhou, Phosphorene: What can we know from computations? Wiley Interdiscip. Rev.: Comput. Mol. Sci. 6(1), 5 (2016)Google Scholar
  19. 19.
    S. Zhang, M. Xie, F. Li, Z. Yan, Y. Li, E. Kan, W. Liu, Z. Chen, and H. Zeng, Semiconducting group 15 monolayers: A broad range of band gaps and high carrier mobilities, Angew. Chem. Int. Ed. 55(5), 1666 (2016)CrossRefGoogle Scholar
  20. 20.
    L. Chen, C. C. Liu, B. Feng, X. He, P. Cheng, Z. Ding, S. Meng, Y. Yao, and K. Wu, Evidence for Dirac fermions in a honeycomb lattice based on silicon, Phys. Rev. Lett. 109(5), 056804 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    K. Shehzad, Y. Xu, C. Gao, and X. Duan, Threedimensional macro-structures of two-dimensional nanomaterials, Chem. Soc. Rev. 45(20), 5541 (2016)CrossRefGoogle Scholar
  22. 22.
    P. Z. Tang, P. C. Chen, W. D. Cao, H. Q. Huang, S. Cahangirov, L. D. Xian, Y. Xu, S. C. Zhang, W. H. Duan, and A. Rubio, Stable two-dimensional dumbbell stanene: A quantum spin Hall insulator, Phys. Rev. B 90(12), 121408 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    S. Rachel and M. Ezawa, Giant magnetoresistance and perfect spin filter in silicene, germanene, and stanene, Phys. Rev. B 89(19), 195303 (2014)CrossRefGoogle Scholar
  24. 24.
    Q. Tang, Z. Zhou, and Z. Chen, Innovation and discovery of graphene-like materials via density-functional theory computations, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 5(5), 360 (2015)Google Scholar
  25. 25.
    X. Zhang, Z. Zhang, X. Zhao, D. Wu, and Z. Zhou, MnBx monolayers with quasi-planar hypercoordinate Mn atoms and unique magnetic and mechanical properties, FlatChem 4, 42 (2017)CrossRefGoogle Scholar
  26. 26.
    L. Li, S. Z. Lu, J. Pan, Z. Qin, Y. Q. Wang, Y. Wang, G. Y. Cao, S. Du, and H. J. Gao, Buckled germanene formation on Pt(111), Adv. Mater. 26(28), 4820 (2014)CrossRefGoogle Scholar
  27. 27.
    F. F. Zhu, W. J. Chen, Y. Xu, C. L. Gao, D. D. Guan, C. H. Liu, D. Qian, S. C. Zhang, and J. F. Jia, Epitaxial growth of two-dimensional stanene, Nat. Mater. 14(10), 1020 (2015)ADSCrossRefGoogle Scholar
  28. 28.
    H. S. Tsai, S. W. Wang, C. H. Hsiao, C. W. Chen, H. Ouyang, Y. L. Chueh, H. C. Kuo, and J. H. Liang, Direct synthesis and practical bandgap estimation of multilayer arsenene nanoribbons, Chem. Mater. 28(2), 425 (2016)CrossRefGoogle Scholar
  29. 29.
    H. S. Tsai, C. W. Chen, C. H. Hsiao, H. Ouyang, and J. H. Liang, The advent of multilayer antimonene nanoribbons with room temperature orange light emission, Chem. Commun. 52(54), 8409 (2016)CrossRefGoogle Scholar
  30. 30.
    J. Ji, X. Song, J. Liu, Z. Yan, C. Huo, S. Zhang, M. Su, L. Liao, W. Wang, Z. Ni, Y. Hao, and H. Zeng, Two-dimensional antimonene single crystals grown by van Der Waals epitaxy, Nat. Commun. 7, 13352 (2016)ADSCrossRefGoogle Scholar
  31. 31.
    S. Zhang, J. Zhou, Q. Wang, X. Chen, Y. Kawazoe, and P. Jena, Penta-graphene: A new carbon allotrope, Proc. Natl. Acad. Sci. USA 112(8), 2372 (2015)ADSCrossRefGoogle Scholar
  32. 32.
    A. Lopez-Bezanilla, and P. B. Littlewood, S–P-band inversion in a novel two-dimensional material, J. Phys. Chem. C 119(33), 19469 (2015)CrossRefGoogle Scholar
  33. 33.
    S. Zhang, J. Zhou, Q. Wang, and P. Jena, Beyond graphitic carbon nitride: Nitrogen-rich penta-CN2 sheet, J. Phys. Chem. C 120(7), 3993 (2016)CrossRefGoogle Scholar
  34. 34.
    F. Li, K. Tu, H. Zhang, and Z. Chen, Flexible structural and electronic properties of a pentagonal B2C monolayer via external strain: A computational investigation, Phys. Chem. Chem. Phys. 17(37), 24151 (2015)CrossRefGoogle Scholar
  35. 35.
    H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, and P. D. Ye, Phosphorene: An unexplored 2D semiconductor with a high hole mobility, ACS Nano 8(4), 4033 (2014)Google Scholar
  36. 36.
    L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, Black phosphorus field-effect transistors, Nat. Nanotechnol. 9(5), 372 (2014)ADSCrossRefGoogle Scholar
  37. 37.
    R. W. Keyes, The electrical properties of black phosphorus, Phys. Rev. 92(3), 580 (1953)ADSCrossRefGoogle Scholar
  38. 38.
    Y. Takao, H. Asahina, and A. Morita, Electronic structure of black phosphorus in tight binding approach, J. Phys. Soc. Jpn. 50(10), 3362 (1981)ADSCrossRefGoogle Scholar
  39. 39.
    D. Warschauer, Electrical and optical properties of crystalline black phosphorus, J. Appl. Phys. 34(7), 1853 (1963)ADSCrossRefGoogle Scholar
  40. 40.
    S. Narita, Y. Akahama, Y. Tsukiyama, K. Muro, S. Mori, S. Endo, M. Taniguchi, M. Seki, S. Suga, A. Mikuni, and H. Kanzaki, Electrical and optical properties of black phosphorus single crystals, Physica B + C 117–118, 422 (1983)Google Scholar
  41. 41.
    Y. Maruyama, S. Suzuki, K. Kobayashi, and S. Tanuma, Synthesis and some properties of black phosphorus single crystals, Physica B + C 105(1–3), 99 (1981)ADSCrossRefGoogle Scholar
  42. 42.
    S. Zhang, Z. Yan, Y. Li, Z. Chen, and H. Zeng, Atomically thin arsenene and antimonene: Semimetalsemiconductor and indirect-direct band-gap transitions, Angew. Chem. Int. Ed. 54(10), 3112 (2015)CrossRefGoogle Scholar
  43. 43.
    P. Ares, F. Aguilar-Galindo, D. Rodriguez-San-Miguel, D. A. Aldave, S. Diaz-Tendero, M. Alcami, F. Martin, J. Gomez-Herrero, and F. Zamora, Mechanical isolation of highly stable antimonene under ambient conditions, Adv. Mater. 28(30), 6332 (2016)CrossRefGoogle Scholar
  44. 44.
    C. Gibaja, D. Rodriguez-San-Miguel, P. Ares, J. Gomez-Herrero, M. Varela, R. Gillen, J. Maultzsch, F. Hauke, A. Hirsch, G. Abellan, and F. Zamora, Few-layer antimonene by liquid-phase exfoliation, Angew. Chem. Int. Ed. 55(46), 14345 (2016)CrossRefGoogle Scholar
  45. 45.
    P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, J. Luitz, and K. Schwarz, An augmented PlaneWave+ Local Orbitals Program for calculating crystal properties revised edition WIEN2k 13.1 (release 06/26/2013)Google Scholar
  46. 46.
    J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)ADSCrossRefGoogle Scholar
  47. 47.
    H. J. Monkhorst and J. D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13(12), 5188 (1976)ADSMathSciNetCrossRefGoogle Scholar
  48. 48.
    R. Abt, C. Ambrosch-Draxl, and P. Knoll, Optical response of high temperature superconductors by full potential LAPW band structure calculations, Physica B 194–196, 1451 (1994)Google Scholar
  49. 49.
    X. Gonze and C. Lee, Dynamical matrices, born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory, Phys. Rev. B 55(16), 10355 (1997)ADSCrossRefGoogle Scholar
  50. 50.
    P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, et al., Quantum espresso: A modular and opensource software project for quantum simulations of materials, J. Phys.: Condens. Matter 21(39), 395502 (2009)Google Scholar
  51. 51.
    N. Troullier and J. L. Martins, Efficient pseudopotentials for plane-wave calculations, Phys. Rev. B 43(3), 1993 (1991)ADSCrossRefGoogle Scholar
  52. 52.
    B. Delley, An all-electron numerical-method for solving the local density functional for polyatomic-molecules, J. Chem. Phys. 92(1), 508 (1990)ADSCrossRefGoogle Scholar
  53. 53.
    B. Delley, From molecules to solids with the Dmol3 approach, J. Chem. Phys. 113(18), 7756 (2000)ADSCrossRefGoogle Scholar
  54. 54.
    G. J. Martyna, M. L. Klein, and M. Tuckerman, Nosé–Hoover chains: The canonical ensemble via continuous dynamics, J. Chem. Phys. 97(4), 2635 (1992)ADSCrossRefGoogle Scholar
  55. 55.
    H. Shin, S. Kang, J. Koo, H. Lee, J. Kim, and Y. Kwon, Cohesion energetics of carbon allotropes: Quantum Monte Carlo study, J. Chem. Phys. 140(11), 114702 (2014)ADSCrossRefGoogle Scholar
  56. 56.
    X. L. Sheng, Q. B. Yan, F. Ye, Q. R. Zheng, and G. Su, T-carbon: A novel carbon allotrope, Phys. Rev. Lett. 106(15), 155703 (2011)ADSCrossRefGoogle Scholar
  57. 57.
    J. Y. Zhang, R. Wang, X. Zhu, A. Pan, C. Han, X. Li, D. Zhao, C. Ma, W. Wang, H. Su, and C. Niu, Pseudo-topotactic conversion of carbon nanotubes to Tcarbon nanowires under picosecond laser irradiation in methanol, Nat. Commun. 8(1), 683 (2017)ADSCrossRefGoogle Scholar
  58. 58.
    N. Drummond, V. Zolyomi, and V. I. Fal’ko, Electrically tunable band gap in silicene, Phys. Rev. B 85(7), 075423 (2012)ADSCrossRefGoogle Scholar
  59. 59.
    Y. Wang, F. Li, Y. Li, and Z. Chen, Semi-metallic Be5C2 monolayer global minimum with quasi-planar pentacoordinate carbons and negative Poisson’s ratio, Nat. Commun. 7, 11488 (2016)ADSCrossRefGoogle Scholar
  60. 60.
    G. Qin, Q. B. Yan, Z. Qin, S. Y. Yue, M. Hu, and G. Su, Anisotropic intrinsic lattice thermal conductivity of phosphorene from first principles, Phys. Chem. Chem. Phys. 17(7), 4854 (2015)CrossRefGoogle Scholar
  61. 61.
    L. F. Huang, P. L. Gong, and Z. Zeng, Phonon properties, thermal expansion, and thermomechanics of silicene and germanene, Phys. Rev. B 91(20), 205433 (2015)Google Scholar
  62. 62.
    Molina-Sánchez and L. Wirtz, Phonons in single-layer and few-layer MoS2 and WS2, Phys. Rev. B 84(15), 155413 (2011)ADSCrossRefGoogle Scholar
  63. 63.
    J. Heyd, G. E. Scuseria, and M. Ernzerhof, Hybrid functionals based on a screened coulomb potential, J. Chem. Phys. 118(18), 8207 (2003)ADSCrossRefGoogle Scholar
  64. 64.
    H. Zhang, D. Wu, Q. Tang, L. Liu, and Z. Zhou, Zno–Gan heterostructured nanosheets for solar energy harvesting: Computational studies based on hybrid density functional theory, J. Mater. Chem. A Mater. Energy Sustain. 1(6), 2231 (2013)CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Mosayeb Naseri
    • 1
    Email author
  • Shiru Lin
    • 2
  • Jaafar Jalilian
    • 3
  • Jinxing Gu
    • 2
  • Zhongfang Chen
    • 2
  1. 1.Department of Physics, Kermanshah BranchIslamic Azad UniversityKermanshahIran
  2. 2.Department of Chemistry, University of Puerto RicoRio Piedras CampusSan JuanUSA
  3. 3.Young Researchers and Elite Club, Kermanshah BranchIslamic Azad UniversityKermanshahIran

Personalised recommendations