Advertisement

Frontiers of Physics

, 13:138105 | Cite as

Recent progress on borophene: Growth and structures

  • Longjuan Kong
  • Kehui Wu
  • Lan Chen
Review article
Part of the following topical collections:
  1. Inorganic Two-Dimensional Nanomaterials

Abstract

Boron is the neighbor of carbon on the periodic table and exhibits unusual physical characteristics derived from electron-deficient, highly delocalized covalent bonds. As the nearest neighbor of carbon, boron is in many ways similar to carbon, such as having a short covalent radius and the flexibility to adopt sp2 hybridization. Hence, boron could be capable of forming monolayer structural analogues of graphene. Although many theoretical papers have reported finding two-dimensional allotropes of boron, there had been no experimental evidence for such atom-thin boron nanostructures until 2016. Recently, the successful synthesis of single-layer boron (referred to as borophene) on the Ag(111) substrate opens the era of boron nanostructures. In this brief review, we will discuss the progress that has been made on borophene in terms of synthetic techniques, characterizations and the atomic models. However, borophene is just in infancy; more efforts are expected to be made in future on the controlled synthesis of quality samples and tailoring its physical properties.

Keywords

borophene molecular beam epitaxy scanning tunneling microscopy atomic model density functional theory 

Notes

Acknowledgements

This work was supported by the Ministry of Science and Technology of China (Grant Nos. 2016YFA0300904, 2016YFA0202301, 2013CBA01601, and 2013CB921702), the National Natural Science Foundation of China (Grant Nos. 11761141013, 11674366, and 11674368), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDB07020100 and XDPB06).

References

  1. 1.
    K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306(5696), 666 (2004)ADSCrossRefGoogle Scholar
  2. 2.
    D. Akinwande, L. Tao, Q. Yu, X. Lou, P. Peng, and D. Kuzum, Large-area graphene electrodes: Using CVD to facilitate applications in commercial touchscreens, flex-ible nanoelectronics, and neural interfaces, IEEE Nanotechnol. Mag. 9(3), 6 (2015)CrossRefGoogle Scholar
  3. 3.
    A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, et al., Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems, Nanoscale 7(11), 4598 (2015)ADSCrossRefGoogle Scholar
  4. 4.
    G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S. K. Banerjee, and L. Colombo, Electronics based on two-dimensional materials, Nat. Nanotechnol. 9(10), 768 (2014)ADSCrossRefGoogle Scholar
  5. 5.
    A. L. Ivanovskii, Graphene-based and graphene-like materials, Russ. Chem. Rev. 81(7), 571 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    S. Balendhran, S. Walia, H. Nili, S. Sriram, and M. Bhaskaran, Elemental analogues of graphene: Silicene, germanene, stanene, and phosphorene, Small 11(6), 640 (2015)Google Scholar
  7. 7.
    J. Zhao, H. Liu, Z. Yu, R. Quhe, S. Zhou, Y. Wang, C. C. Liu, H. Zhong, N. Han, J. Lu, Y. Yao, and K. Wu, Rise of silicene: A competitive 2D material, Prog. Mater. Sci. 83, 24 (2016)CrossRefGoogle Scholar
  8. 8.
    B. Feng, Z. Ding, S. Meng, Y. Yao, X. He, P. Cheng, L. Chen, and K. Wu, Evidence of silicene in honeycomb structures of silicon on Ag(111), Nano Lett. 12(7), 3507 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    P. Vogt, P. De Padova, C. Quaresima, J. Avila, E. Frantzeskakis, M. C. Asensio, A. Resta, B. Ealet, and G. Le Lay, Silicene: compelling experimental evidence for graphene-like two-dimensional silicon, Phys. Rev. Lett. 108(15), 155501 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    A. Fleurence, R. Friedlein, T. Ozaki, H. Kawai, Y. Wang, and Y. Yamada-Takamura, Experimental evidence for epitaxial silicene on diboride thin films, Phys. Rev. Lett. 108(24), 245501 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    J. Gou, Q. Zhong, S. Sheng, W. Li, P. Cheng, H. Li, L. Chen, and K. Wu, Strained monolayer germanene with 1 x 1 lattice on Sb(111), 2D Materials 3, 045005 (2016)CrossRefGoogle Scholar
  12. 12.
    L. Li, S. Lu, J. Pan, Z. Qin, Y. Wang, Y. Wang, G. y. Cao, S. Du, and H. J. Gao, Buckled germanene formation on Pt(111), Adv. Mater. 26(28), 4820 (2014)CrossRefGoogle Scholar
  13. 13.
    S. Cahangirov, M. Topsakal, E. Aktürk, H. Şahin, and S. Ciraci, Two-and one-dimensional honeycomb structures of silicon and germanium, Phys. Rev. Lett. 102(23), 236804 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    J. Gou, L. Kong, H. Li, Q. Zhong, W. Li, P. Cheng, L. Chen, and K. Wu, Strain-induced band engineering in monolayer stanene on Sb(111), Phys. Rev. Mater. 1(5), 054004 (2017)CrossRefGoogle Scholar
  15. 15.
    F.-F. Zhu, W.-J. Chen, Y. Xu, C.-L. Gao, D.-D. Guan, C.-H. Liu, D. Qian, S.-C. Zhang, and J.-F. Jia, Epitaxial growth of two-dimensional stanene, Nature Mater. 14, 1020 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    Y. Xu, B. Yan, H. J. Zhang, J. Wang, G. Xu, P. Tang, W. Duan, and S. C. Zhang, Large-gap quantum spin Hall insulators in thin films, Phys. Rev. Lett. 111(13), 136804 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    C. C. Liu, H. Jiang, and Y. Yao, Low-energy effective Hamiltonian involving spin-orbit coupling in silicene and two-dimensional germanium and tin, Phys. Rev. B 84(19), 195430 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    A. Molle, J. Goldberger, M. Houssa, Y. Xu, S. C. Zhang, and D. Akinwande, Buckled two-dimensional Xene sheets, Nat. Mater. 16(2), 163 (2017)ADSCrossRefGoogle Scholar
  19. 19.
    K. Takeda and K. Shiraishi, Theoretical possibility of stage corrugation in Si and Ge analogs of graphite, Phys. Rev. B 50(20), 14916 (1994)ADSCrossRefGoogle Scholar
  20. 20.
    K. H. Wu, A review of the growth and structures of silicene on Ag(111), Chin. Phys. B 24(8), 086802 (2015)ADSCrossRefGoogle Scholar
  21. 21.
    H. J. Zhai, B. Kiran, J. Li, and L. S. Wang, Hydrocarbon analogues of boron clusters — planarity, aromaticity and antiaromaticity, Nat. Mater. 2(12), 827 (2003)CrossRefGoogle Scholar
  22. 22.
    A. P. Sergeeva, I. A. Popov, Z. A. Piazza, W. L. Li, C. Romanescu, L. S. Wang, and A. I. Boldyrev, Understanding boron through size-selected clusters: Structure, chemical bonding, and fluxionality, Acc. Chem. Res. 47(4), 1349 (2014)CrossRefGoogle Scholar
  23. 23.
    W. L. Li, Q. Chen, W. J. Tian, H. Bai, Y. F. Zhao, H. S. Hu, J. Li, H. J. Zhai, S. D. Li, and L. S. Wang, The B35 cluster with a double-hexagonal vacancy: A new and more flexible structural motif for borophene, J. Am. Chem. Soc. 136(35), 12257 (2014)CrossRefGoogle Scholar
  24. 24.
    Z. A. Piazza, H. S. Hu, W. L. Li, Y. F. Zhao, J. Li, and L. S. Wang, Planar hexagonal B36 as a potential basis for extended single-atom layer boron sheets, Nat. Commun. 5, 3113 (2014)CrossRefGoogle Scholar
  25. 25.
    W. Huang, A. P. Sergeeva, H. J. Zhai, B. B. Averkiev, L. S. Wang, and A. I. Boldyrev, A concentric planar doubly-aromatic B19 cluster, Nat. Chem. 2(3), 202 (2010)CrossRefGoogle Scholar
  26. 26.
    H. J. Zhai, Y. F. Zhao, W. L. Li, Q. Chen, H. Bai, H. S. Hu, Z. A. Piazza, W. J. Tian, H. G. Lu, Y. B. Wu, Y. W. Mu, G. F. Wei, Z. P. Liu, J. Li, S. D. Li, and L. S. Wang, Observation of an all-boron fullerene, Nat. Chem. 6(8), 727 (2014)CrossRefGoogle Scholar
  27. 27.
    J. Lv, Y. Wang, L. Zhu, and Y. Ma, B38: An all-boron fullerene analogue, Nanoscale 6(20), 11692 (2014)ADSCrossRefGoogle Scholar
  28. 28.
    H. Li, N. Shao, B. Shang, L. F. Yuan, J. Yang, and X. C. Zeng, Icosahedral B12-containing core–shell structures of B80, Chem. Commun. 46(22), 3878 (2010)CrossRefGoogle Scholar
  29. 29.
    N. G. Szwacki, A. Sadrzadeh, and B. I. Yakobson, B80 fullerene: An ab initio prediction of geometry, stability, and electronic structure, Phys. Rev. Lett. 98(16), 166804 (2007)ADSCrossRefGoogle Scholar
  30. 30.
    J. Zhao, L. Wang, F. Li, and Z. Chen, B80 and other medium-sized boron clusters: Core-shell structures, not hollow cages, J. Phys. Chem. A 114(37), 9969 (2010)CrossRefGoogle Scholar
  31. 31.
    D. Ciuparu, R. F. Klie, Y. Zhu, and L. Pfefferle, Synthesis of pure boron single-wall nanotubes, J. Phys. Chem. B 108(13), 3967 (2004)CrossRefGoogle Scholar
  32. 32.
    J. Tian, Z. Xu, C. Shen, F. Liu, N. Xu, and H. J. Gao, One-dimensional boron nanostructures: Prediction, synthesis, characterizations, and applications, Nanoscale 2(8), 1375 (2010)ADSCrossRefGoogle Scholar
  33. 33.
    A. K. Singh, A. Sadrzadeh, and B. I. Yakobson, Probing properties of boron tubes by ab initio calculations, Nano Lett. 8(5), 1314 (2008)ADSCrossRefGoogle Scholar
  34. 34.
    T. Ogitsu, E. Schwegler, and G. Galli, β-rhombohedral boron: At the crossroads of the chemistry of boron and the physics of frustration, Chem. Rev. 113(5), 3425 (2013)CrossRefGoogle Scholar
  35. 35.
    J. K. Olson and A. I. Boldyrev, Electronic transmutation: Boron acquiring an extra electron becomes ‘carbon’, Chem. Phys. Lett. 523, 83 (2012)ADSCrossRefGoogle Scholar
  36. 36.
    S. Saxena, Introduction to Boron Nanostructures, Handbook of Boron Nanostructures, 1 (2016)Google Scholar
  37. 37.
    I. Boustani, Systematic ab initio investigation of bare boron clusters: mDetermination of the geometryand electronic structures of Bn (n = 2–14), Phys. Rev. B 55(24), 16426 (1997)ADSCrossRefGoogle Scholar
  38. 38.
    I. Boustani, New quasi-planar surfaces of bare boron, Surf. Sci. 370(2–3), 355 (1997)ADSCrossRefGoogle Scholar
  39. 39.
    K. C. Lau and R. Pandey, Stability and electronic properties of atomistically-engineered 2D boron sheets, J. Phys. Chem. C 111(7), 2906 (2007)CrossRefGoogle Scholar
  40. 40.
    K. C. Lau, R. Pati, R. Pandey, and A. C. Pineda, Firstprinciples study of the stability and electronic properties of sheets and nanotubes of elemental boron, Chem. Phys. Lett. 418(4–6), 549 (2006)ADSCrossRefGoogle Scholar
  41. 41.
    I. Cabria, M. López, and J. Alonso, Density functional calculations of hydrogen adsorption on boron nanotubes and boron sheets, Nanotechnology 17(3), 778 (2006)ADSCrossRefGoogle Scholar
  42. 42.
    H. Tang and S. Ismail-Beigi, Self-doping in boron sheets from first principles: A route to structural design of metal boride nanostructures, Phys. Rev. B 80(13), 134113 (2009)ADSCrossRefGoogle Scholar
  43. 43.
    H. Tang and S. Ismail-Beigi, Novel precursors for boron nanotubes: The competition of two-center and threecenter bonding in boron sheets, Phys. Rev. Lett. 99(11), 115501 (2007)ADSCrossRefGoogle Scholar
  44. 44.
    H. Tang and S. Ismail-Beigi, First-principles study of boron sheets and nanotubes, Phys. Rev. B 82(11), 115412 (2010)ADSCrossRefGoogle Scholar
  45. 45.
    X. Wu, J. Dai, Y. Zhao, Z. Zhuo, J. Yang, and X. C. Zeng, Two-dimensional boron monolayer sheets, ACS Nano 6(8), 7443 (2012)ADSCrossRefGoogle Scholar
  46. 46.
    E. S. Penev, S. Bhowmick, A. Sadrzadeh, and B. I. Yakobson, Polymorphism of two-dimensional boron, Nano Lett. 12(5), 2441 (2012)ADSCrossRefGoogle Scholar
  47. 47.
    Y. Liu, E. S. Penev, and B. I. Yakobson, Probing the synthesis of two-dimensional boron by first-principles computations, Angew. Chem. Int. Ed. 52(11), 3156 (2013)CrossRefGoogle Scholar
  48. 48.
    H. Liu, J. Gao, and J. Zhao, From boron cluster to twodimensional boron sheet on Cu(111) surface: Growth mechanism and hole formation, Sci. Rep. 3(1), 3238 (2013)ADSCrossRefGoogle Scholar
  49. 49.
    L. Zhang, Q. Yan, S. Du, G. Su, and H. J. Gao, Boron sheet adsorbed on metal surfaces: Structures and electronic properties, J. Phys. Chem. C 116(34), 18202 (2012)CrossRefGoogle Scholar
  50. 50.
    B. Feng, J. Zhang, Q. Zhong, W. Li, S. Li, H. Li, P. Cheng, S. Meng, L. Chen, and K. Wu, Experimental realization of two-dimensional boron sheets, Nat. Chem. 8(6), 563 (2016)CrossRefGoogle Scholar
  51. 51.
    A. J. Mannix, X. F. Zhou, B. Kiraly, J. D. Wood, D. Alducin, B. D. Myers, X. Liu, B. L. Fisher, U. Santiago, J. R. Guest, M. J. Yacaman, A. Ponce, A. R. Oganov, M. C. Hersam, and N. P. Guisinger, Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs, Science 350(6267), 1513 (2015)Google Scholar
  52. 52.
    Q. Zhong, J. Zhang, P. Cheng, B. Feng, W. Li, S. Sheng, H. Li, S. Meng, L. Chen, and K. Wu, Metastable phases of 2D boron sheets on Ag(111), J. Phys. Condens. Matter 29(9), 095002 (2017)ADSCrossRefGoogle Scholar
  53. 53.
    Z. Zhang, A. J. Mannix, Z. Hu, B. Kiraly, N. P. Guisinger, M. C. Hersam, and B. I. Yakobson, Substrate-induced nanoscale undulations of borophene on silver, Nano Lett. 16(10), 6622 (2016)ADSCrossRefGoogle Scholar
  54. 54.
    Q. Zhong, L. Kong, J. Gou, W. Li, S. Sheng, S. Yang, P. Cheng, H. Li, K. Wu, and L. Chen, Synthesis of borophene nanoribbons on Ag(110) surface, arXiv: 1704.05603 (2017)Google Scholar
  55. 55.
    Z. Zhang, Y. Yang, G. Gao, and B. I. Yakobson, Two- Dimensional Boron Monolayers Mediated by Metal Substrates, Angew. Chem. Int. Ed. 54(44), 13022 (2015)CrossRefGoogle Scholar
  56. 56.
    A. J. Mannix, B. Kiraly, M. C. Hersam, and N. P. Guisinger, Synthesis and chemistry of elemental 2D materials, Nature Rev. Chem. 1, 0014 (2017)CrossRefGoogle Scholar
  57. 57.
    Z. Zhang, E. S. Penev, and B. I. Yakobson, Twodimensional boron: Structures, properties and applications, Chem. Soc. Rev. 46(22), 6746 (2017)Google Scholar
  58. 58.
    B. Feng, O. Sugino, R. Y. Liu, J. Zhang, R. Yukawa, M. Kawamura, T. Iimori, H. Kim, Y. Hasegawa, H. Li, L. Chen, K. Wu, H. Kumigashira, F. Komori, T.C. Chiang, S. Meng, and I. Matsuda, Dirac fermions in borophene, Phys. Rev. Lett. 118(9), 096401 (2017)ADSCrossRefGoogle Scholar
  59. 59.
    B. Feng, J. Zhang, S. Ito, M. Arita, C. Cheng, L. Chen, K. Wu, F. Komori, O. Sugino, and K. Miyamoto, Discovery of 2D anisotropic Dirac cones, Adv. Mater. 30(2),1704025 (2018)CrossRefGoogle Scholar
  60. 60.
    B. Feng, J. Zhang, R. Y. Liu, T. Iimori, C. Lian, H. Li, L. Chen, K. Wu, S. Meng, F. Komori, and I. Matsuda, Direct evidence of metallic bands in a monolayer boron sheet, Phys. Rev. B 94(4), 041408 (2016)ADSCrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of PhysicsChinese Academy of SciencesBeijingChina
  2. 2.School of PhysicsUniversity of Chinese Academy of SciencesBeijingChina
  3. 3.Collaborative Innovation Center of Quantum MatterBeijingChina

Personalised recommendations