Skip to main content
Log in

Dynamic conductivity modified by impurity resonant states in doping three-dimensional Dirac semimetals

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

The impurity effect is studied in three-dimensional Dirac semimetals in the framework of a T-matrix method to consider the multiple scattering events of Dirac electrons off impurities. It has been found that a strong impurity potential can significantly restructure the energy dispersion and the density of states of Dirac electrons. An impurity-induced resonant state emerges and significantly modifies the pristine optical response. It is shown that the impurity state disturbs the common longitudinal optical conductivity by creating either an optical conductivity peak or double absorption jumps, depending on the relative position of the impurity band and the Fermi level. More importantly, these conductivity features appear in the forbidden region between the Drude and interband transition, completely or partially filling the Pauli block region of optical response. The underlying physics is that the appearance of resonance states as well as the broadening of the bands leads to a more complicated selection rule for the optical transitions, making it possible to excite new electron-hole pairs in the forbidden region. These features in optical conductivity provide valuable information to understand the impurity behaviors in 3D Dirac materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Borisenko, Q. Gibson, D. Evtushinsky, V. Zabolotnyy, B. Büchner, and R. J. Cava, Experimental realization of a three-dimensional Dirac semimetal, Phys. Rev. Lett. 113(2), 027603 (2014)

    Article  ADS  Google Scholar 

  2. Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S. K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, and Y. L. Chen, Discovery of a threedimensional topological Dirac semimetal Na3Bi, Science 343(6173), 864 (2014)

    Article  ADS  Google Scholar 

  3. X. C. Pan, Y. M. Pan, J. Jiang, H. K. Zuo, H. M. Liu, X. L. Chen, Z. X. Wei, S. Zhang, Z. H. Wang, X. G. Wan, Z. R. Yang, D. L. Feng, Z. C. Xia, L. Li, F. Q. Song, B. G. Wang, Y. H. Zhang, and G. H. Wang, Carrier balance and linear magnetoresistance in type-II Weyl semimetal WTe2, Front. Phys. 12(3), 127203 (2017)

    Article  Google Scholar 

  4. R. Yu, Z. Fang, X. Dai, and H. M. Weng, Topological nodal line semimetals predicted from first-principles calculations, Front. Phys. 12(3), 127202 (2017)

    Article  Google Scholar 

  5. T. Wehling, A. Black-Schaffer, and A. Balatsky, Dirac materials, Adv. Phys. 63(1), 1 (2014)

    Article  ADS  Google Scholar 

  6. D. Neubauer, J. P. Carbotte, A. A. Nateprov, A. Löhle, M. Dressel, and A. V. Pronin, Interband optical conductivity of the [001]-oriented Dirac semimetalCd3As2, Phys. Rev. B 93(12), 121202 (2016)

    Article  ADS  Google Scholar 

  7. Z. G. Chen, R. Y. Chen, R. D. Zhong, J. Schneeloch, C. Zhang, Y. Huang, F. Qu, R. Yu, Q. Li, G. D. Gu, and N. L. Wang, Spectroscopic evidence for bulk-band inversion and three-dimensional massive Dirac fermions in ZrTe5, Proc. Natl. Acad. Sci. USA 114(5), 816 (2017)

    Article  ADS  Google Scholar 

  8. T. Timusk, J. P. Carbotte, C. C. Homes, D. N. Basov, and S. G. Sharapov, Three-dimensional Dirac fermions in quasicrystals as seen via optical conductivity, Phys. Rev. B 87(23), 235121 (2013)

    Article  ADS  Google Scholar 

  9. P. E. C. Ashby, and J. P. Carbotte, Chiral anomaly and optical absorption in Weyl semimetals, Phys. Rev. B 89(24), 245121 (2014)

    Article  ADS  Google Scholar 

  10. C. J. Tabert, and J. P. Carbotte, Optical conductivity of Weyl semimetals and signatures of the gapped semimetal phase transition, Phys. Rev. B 93(8), 085442 (2016)

    Article  ADS  Google Scholar 

  11. V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, Unusual microwave response of Dirac quasiparticles in graphene, Phys. Rev. Lett. 96(25), 256802 (2006)

    Article  ADS  Google Scholar 

  12. V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, On the universal ac optical background in graphene, New J. Phys. 11(9), 095013 (2009)

    Article  ADS  Google Scholar 

  13. Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, Dirac charge dynamics in graphene by infrared spectroscopy, Nat. Phys. 4(7), 532 (2008)

    Article  Google Scholar 

  14. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, Fine structure constant defines visual transparency of graphene, Science 320(5881), 1308 (2008)

    Article  ADS  Google Scholar 

  15. K. F. Mak, M. Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich, and T. F. Heinz, Measurement of the optical conductivity of graphene, Phys. Rev. Lett. 101(19), 196405 (2008)

    Article  ADS  Google Scholar 

  16. C. J. Tabert, J. P. Carbotte, and E. J. Nicol, Optical and transport properties in three-dimensional Dirac and Weyl semimetals, Phys. Rev. B 93(8), 085426 (2016)

    Article  ADS  Google Scholar 

  17. H. Z. Lu and S. Q. Shen, Quantum transport in topological semimetals under magnetic fields, Front. Phys. 12(3), 127201 (2017)

    Article  Google Scholar 

  18. Y. P. Li, Z. Wang, P. S. Li, X. J. Yang, Z. X. Shen, F. Sheng, X. D. Li, Y. H. Lu, Y. Zheng, and Z. A. Xu, Negative magnetoresistance in Weyl semimetals NbAs and NbP: Intrinsic chiral anomaly and extrinsic effects, Front. Phys. 12(3), 127205 (2017)

    Article  Google Scholar 

  19. B. Xu, Y. M. Dai, L. X. Zhao, K. Wang, R. Yang, W. Zhang, J. Y. Liu, H. Xiao, G. F. Chen, A. J. Taylor, D. A. Yarotski, R. P. Prasankumar, and X. G. Qiu, Optical spectroscopy of the Weyl semimetal TaAs, Phys. Rev. B 93(12), 121110 (2016)

    Article  ADS  Google Scholar 

  20. A. V. Balatsky, I. Vekhter, and J. X. Zhu, Impurityinduced states in conventional and unconventional superconductors, Rev. Mod. Phys. 78(2), 373 (2006)

    Article  ADS  Google Scholar 

  21. Z. H. Huang, D. P. Arovas, and A. V. Balatsky, Impurity scattering in Weyl semimetals and their stability classification, New J. Phys. 15(12), 123019 (2013)

    Article  ADS  Google Scholar 

  22. S. H. Zheng, R. Q. Wang, M. Zhong, and H. J. Duan, Resonance states and beating pattern induced by quantum impurity scattering in Weyl/Dirac semimetals, Sci. Rep. 6(1), 36106 (2016)

    Article  ADS  Google Scholar 

  23. R. R. Biswas and A. V. Balatsky, Impurity-induced states on the surface of three-dimensional topological insulators, Phys. Rev. B 81(23), 233405 (2010)

    Article  ADS  Google Scholar 

  24. S. H. Zheng, M. X. Deng, J. M. Qiu, Q. H. Zhong, M. Yang, and R. Q. Wang, Interplay of quantum impurities and topological surface modes, Phys. Lett. A 379(43), 2890 (2015)

    Article  ADS  MATH  Google Scholar 

  25. R. Q. Wang, L. Sheng, M. Yang, B. Wang, and D. Y. Xing, Electrically tunable Dirac-point resonance induced by a nanomagnet absorbed on the topological insulator surface, Phys. Rev. B 91(24), 245409 (2015)

    Article  ADS  Google Scholar 

  26. A. M. Black-Schaffer, A. V. Balatsky, and J. Fransson, Filling of magnetic-impurity-induced gap in topological insulators by potential scattering, Phys. Rev. B 91(20), 201411 (2015)

    Article  ADS  Google Scholar 

  27. R. Q. Wang, S. H. Zheng, and M. Yang, A new selffilling mechanism of band gap in magnetically doped topological surface states: Spin-flipping inelastic scattering, New J. Phys. 18(9), 093048 (2016)

    Article  ADS  Google Scholar 

  28. Z. Alpichshev, R. R. Biswas, A. V. Balatsky, J. G. Analytis, J. H. Chu, I. R. Fisher, and A. Kapitulnik, STM imaging of impurity resonances on Bi2Se3, Phys. Rev. Lett. 108(20), 206402 (2012)

    Article  ADS  Google Scholar 

  29. Y. Xu, J. Chiu, L. Miao, H. He, Z. Alpichshev, A. Kapitulnik, R. R. Biswas, and L. A. Wray, Disorder enabled band structure engineering of a topological insulator surface, Nat. Commun. 8, 14081 (2017)

    Article  ADS  Google Scholar 

  30. M. X. Deng, W. Luo, W. Y. Deng, M. N. Chen, L. Sheng, and D. Y. Xing, Competing effects of magnetic impurities in the anomalous Hall effect on the surface of a topological insulator, Phys. Rev. B 94(23), 235116 (2016)

    Article  ADS  Google Scholar 

  31. M. L. Teague, H. Chu, F. X. Xiu, L. He, K. L. Wang, and N. C. Yeh, Observation of Fermi-energy dependent unitary impurity resonances in a strong topological insulator Bi2Se3 with scanning tunneling spectroscopy, Solid State Commun. 152(9), 747 (2012)

    Article  ADS  Google Scholar 

  32. M. Zhong, S. Li, H. J. Duan, L. B. Hu, M. Yang, and R. Q. Wang, Effect of impurity resonant states on optical and thermoelectric properties on the surface of a topological insulator, Sci. Rep. 7(1), 3971 (2017)

    Article  ADS  Google Scholar 

  33. E. V. Gorbar, V. A. Miransky, I. A. Shovkovy, and P. O. Sukhachov, Origin of dissipative Fermi arc transport in Weyl semimetals, Phys. Rev. B 93(23), 235127 (2016)

    Article  ADS  Google Scholar 

  34. H. Z. Lu, S. B. Zhang, and S. Q. Shen, High-field magnetoconductivity of topological semimetals with short range potential, Phys. Rev. B 92(4), 045203 (2015)

    Article  ADS  Google Scholar 

  35. N. M. R. Peres, F. Guinea, and A. H. Castro Neto, Electronic properties of disordered two-dimensional carbon, Phys. Rev. B 73(12), 125411 (2006)

    Article  ADS  Google Scholar 

  36. G. D. Mahan, Many-Particle Physics, 3rd Ed., Plenum, 1993

    Google Scholar 

  37. F. Parhizgar, A. G. Moghaddam, and R. Asgari, Optical response and activity of ultrathin films of topological insulators, Phys. Rev. B 92(4), 045429 (2015)

    Article  ADS  Google Scholar 

  38. N. A. Sinitsyn, J. E. Hill, H. Min, J. Sinova, and A. H. MacDonald, Charge and spin Hall conductivity in metallic graphene, Phys. Rev. Lett. 97(10), 106804 (2006)

    Article  ADS  Google Scholar 

  39. V. P. Gusynin, S. G. Sharapov, and A. A. Varlamov, Spin Nernst effect and intrinsic magnetization in twodimensional Dirac materials, Low Temp. Phys. 41(5), 342 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme (GDUPS) (2017), the National Natural Science Foundation of China (Grant Nos. 11474106 and 11774100), Guangdong Natural Science Foundation of China (Grant Nos. 2017B030311003 and 2015A030313384), and the Innovation Project of Graduate School of South China Normal University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rui-Qiang Wang or Jun Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Wang, C., Zheng, SH. et al. Dynamic conductivity modified by impurity resonant states in doping three-dimensional Dirac semimetals. Front. Phys. 13, 137303 (2018). https://doi.org/10.1007/s11467-017-0742-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-017-0742-2

Keywords

Navigation