Skip to main content
Log in

Fractal dimension study of polaron effects in cylindrical GaAs/Al x Ga1-xAs core–shell nanowires

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Polaron effects in cylindrical GaAs/Al x Ga1-xAs core–shell nanowires are studied by applying the fractal dimension method. In this paper, the polaron properties of GaAs/Al x Ga1-xAs core–shell nanowires with different core radii and aluminum concentrations are discussed. The polaron binding energy, polaron mass shift, and fractal dimension parameter are numerically determined as functions of shell width. The calculation results reveal that the binding energy and mass shift of the polaron first increase and then decrease as the shell width increases. A maximum value appears at a certain shell width for different aluminum concentrations and a given core radius. By using the fractal dimension method, polaron problems in cylindrical GaAs/Al x Ga1-xAs core–shell nanowires are solved in a simple manner that avoids complex and lengthy calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Mayer, D. Rudolph, J. Schnell, S. Morkötter, J. Winnerl, J. Treu, K. Müller, G. Bracher, G. Abstreiter, G. Koblmüller, and J. J. Finley, Lasing from individual GaAs-AlGaAs core–shell nanowires up to room temperature, Nat. Commun. 4, 2931 (2013)

    Article  Google Scholar 

  2. A. Lubk, D. Wolf, P. Prete, N. Lovergine, T. Niermann, S. Sturm, and H. Lichte, Nanometer-scale tomographic reconstruction of three-dimensional electrostatic potentials in GaAs/AlGaAs core–shell nanowires, Phys. Rev. B 90(12), 125404 (2014)

    Article  ADS  Google Scholar 

  3. S. Morkötter, N. Jeon, D. Rudolph, B. Loitsch, D. Spirkoska, E. Hoffmann, M. Döblinger, S. Matich, J. J. Finley, L. J. Lauhon, G. Abstreiter, and G. Koblmüller, Demonstration of confined electron gas and steep-slope behavior in delta-doped GaAs-AlGaAs core–shell nanowire transistors, Nano Lett. 15(5), 3295 (2015)

    Article  ADS  Google Scholar 

  4. N. Jiang, P. Parkinson, Q. Gao, S. Breuer, H. H. Tan, J. Wong-Leung, and C. Jagadish, Long minority carrier lifetime in Au-catalyzed GaAs/AlxGa1-xAs core-shell nanowires, Appl. Phys. Lett. 101(2), 023111 (2012)

    Article  ADS  Google Scholar 

  5. D. Rudolph, S. Funk, M. Döblinger, S. Morkötter, S. Hertenberger, L. Schweickert, J. Becker, S. Matich, M. Bichler, D. Spirkoska, I. Zardo, J. J. Finley, G. Abstreiter, and G. Koblmüller, Spontaneous alloy composition ordering in GaAs-AlGaAs core–shell nanowires, Nano Lett. 13(4), 1522 (2013)

    Article  ADS  Google Scholar 

  6. X. F. He, Excitons in anisotropic solids: The model of fractional-dimensional space, Phys. Rev. B 43(3), 2063 (1991)

    Article  ADS  Google Scholar 

  7. A. Matos-Abiague, A fractional-dimensional space approach to the polaron effect in quantum wells, J. Phys. Condens. Matter 14(17), 4543 (2002)

    Article  ADS  Google Scholar 

  8. A. Matos-Abiague, Fractional-dimensional space approach for parabolic-confined polarons, Semicond. Sci. Technol. 17(2), 150 (2002)

    Article  ADS  Google Scholar 

  9. A. Matos-Abiague, Polaron effect in GaAs-Ga1-xAlxAs quantum wells: A fractional-dimensional space approach, Phys. Rev. B 65(16), 165321 (2002)

    Article  ADS  Google Scholar 

  10. Z. H. Wu, H. Li, L. X. Yan, B. C. Liu, and Q. Tian, Fractional-dimensional space approach for the polaron in a GaAs film deposited on AlxGa1-xAs substrate, Physica B 410, 28 (2013)

    Article  ADS  Google Scholar 

  11. Z. H. Wu, H. Li, L. X. Yan, B. C. Liu, and Q. Tian, The polaron in a GaAs film deposited on AlxGa1-xAs influenced by the thickness of the Substrate, Superlattices Microstruct. 55, 16 (2013)

    Article  ADS  Google Scholar 

  12. H. Li, B. C. Liu, B. X. Shi, S. Y. Dong, and Q. Tian, Novel method to determine effective length of quantum confinement using fractional-dimension space approach, Front. Phys. 10(4), 107302 (2015)

    Article  Google Scholar 

  13. Z. H. Wu, L. Chen, and Q. Tian, Exciton binding energies in GaAs films on AlxGa1-xAs substrates, Int. J. Mod. Phys. B 29(30), 1550213 (2015)

    Article  ADS  Google Scholar 

  14. A. L. Vartanian, A. L. Asatryan, and L. A. Vardanyan, Influence of both electric and magnetic fields on the polaron properties in a finite-potential quantum well wire, Physica E 47, 134 (2013)

    Article  ADS  Google Scholar 

  15. P. Christol, P. Lefebvre and H. Mathieu, Fractionaldimensional calculation of exciton binding energies in semiconductor quantum wells and quantum-well wires, J. Appl. Phys. 74(9), 5626 (1993)

    Article  ADS  Google Scholar 

  16. P. Lefebvre, P. Christol, and H. Mathieu, Excitons in semiconductor superlattices: Heuristic description of the transfer between Wannier-like and Frenkel-like regimes, Phys. Rev. B 46(20), 13603 (1992)

    Article  ADS  Google Scholar 

  17. A. Thilagam and A. Matos-Abiague, Excitonic polarons in confined systems, J. Phys.: Condens. Matter 16(23), 3981 (2004)

    ADS  Google Scholar 

  18. E. Reyes-Gómez, L. E. Oliveira, and M. de Dios-Leyva, Shallow impurities in semiconductor superlattices: A fractional-dimensional space approach, J. Appl. Phys. 85(8), 4045 (1999)

    Article  ADS  Google Scholar 

  19. I. D. Mikhailov, F. J. Betancur, R. A. Escorcia, and J. Sierra-Ortega, Shallow donors in semiconductor heterostructures: Fractal dimension approach and the variational principle, Phys. Rev. B 67(11), 115317 (2003)

    Article  ADS  Google Scholar 

  20. J. Kundrotas, A. Cerškus, S. Ašmontas, G. Valušis, B. Sherliker, M. P. Halsall, M. J. Steer, E. Johannessen, and P. Harrison, Excitonic and impurity-related optical transitions in Beδ-doped GaAs/AlAs multiple quantum wells: Fractional-dimensional space approach, Phys. Rev. B 72(23), 235322 (2005)

    Article  ADS  Google Scholar 

  21. J. Kundrotas, A. Cerškus, S. Ašmontas, G. Valušis, M. P. Halsall, E. Johannessen, and P. Harrison, Impurityinduced Huang–Rhys factor in Beδ-doped GaAs/AlAs multiple quantum wells: Fractional-dimensional space approach, Semicond. Sci. Technol. 22(9), 1070 (2007)

    Article  ADS  Google Scholar 

  22. M. A. Smondyrev, B. Gerlach, and M. O. Dzero, Mean parameter model for the Pekar–Fröhlich polaron in a multilayered heterostructure, Phys. Rev. B 62(24), 16692 (2000)

    Article  ADS  Google Scholar 

  23. M. Hocevar, L. T. Thanh Giang, R. Songmuang, M. den Hertog, L. Besombes, J. Bleuse, Y. M. Niquet, and N. T. Pelekanos, Residual strain and piezoelectric effects in passivated GaAs/AlGaAs core-shell nanowires, Appl. Phys. Lett. 102(19), 191103 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Tian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, H., Li, H. & Tian, Q. Fractal dimension study of polaron effects in cylindrical GaAs/Al x Ga1-xAs core–shell nanowires. Front. Phys. 13, 137301 (2018). https://doi.org/10.1007/s11467-017-0730-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-017-0730-6

Keywords

Navigation