Abstract
Quantum communication provides an enormous advantage over its classical counterpart: security of communications based on the very principles of quantum mechanics. Researchers have proposed several approaches for user identity authentication via entanglement. Unfortunately, these protocols fail because an attacker can capture some of the particles in a transmitted sequence and send what is left to the receiver through a quantum channel. Subsequently, the attacker can restore some of the confidential messages, giving rise to the possibility of information leakage. Here we present a new robust General N user authentication protocol based on N-particle Greenberger–Horne–Zeilinger (GHZ) states, which makes eavesdropping detection more effective and secure, as compared to some current authentication protocols. The security analysis of our protocol for various kinds of attacks verifies that it is unconditionally secure, and that an attacker will not obtain any information about the transmitted key. Moreover, as the number of transferred key bits N becomes larger, while the number of users for transmitting the information is increased, the probability of effectively obtaining the transmitted authentication keys is reduced to zero.
This is a preview of subscription content,
to check access.References
C. H. Bennett and G. Brassard, Quantum cryptography: Public key distribution and coin tossing, Theor. Comput. Sci. 560, 7 (2014)
M. Nielsen and I. Chuang, Quantum Computation and Quantum Information, Cambridge: Cambridge University Press, 2000
G. H. Zeng, Quantum Cryptology, Beijing: Science Press, 2006
G. Assche, Quantum Cryptography and Secret-Key Distillation, Cambridge: Cambridge University Press, 2006
M. S. Sharbaf, Quantum Cryptography: A New Generation of Information Technology Security System, Sixth International Conference on Information Technology. Nevada, USA, IEEE, pp 1644–1648, April, 2009
W. K. Wootters and W. H. Zurek, A single quantum cannot be cloned, Nature 299(5886), 802 (1982)
A. Poppe, M. Peev, and O. Maurhart, Outline of the SECOQC quantum-key distribution network in Vienna, Int. J. Quant. Inf. 06(02), 209 (2008)
M. Peev, et al., The SECOQC quantum key distribution network in Vienna, New J. Phys. 11(075001), 1367 (2009)
C. Elliott, Building the quantum network, New J. Phys. 4, 46 (2002)
C. Elliott, A. Colvin, D. Pearson, O. Pikalo, J. Schlafer, and H. Yeh, Current status of the DARPA quantum network, Quantum Information and Computation 5815, 138 (2005)
A. F. Metwaly, M. Z. Rashad, F. A. Omara, and A. A. Megahed, Architecture of multicast centralized key management scheme using quantum key distribution and classical symmetric encryption, Eur. Phys. J. Spec. Top. 223(8), 1711 (2014)
A. Farouk, M. Zakaria, A. Megahed, and F. A. Omara, A generalized architecture of quantum secure direct communication for N disjointed users with authentication, Sci. Rep. 5(1), 16080 (2015)
M. Naseri, M. A. Raji, M. R. Hantehzadeh, A. Farouk, A. Boochani, and S. Solaymani, A scheme for secure quantum communication network with authentication using GHZ-like states and cluster states controlled teleportation, Quantum Inform. Process. 14(11), 4279 (2015)
K. Boström and T. Felbinger, Deterministic Secure Direct Communication Using Entanglement, Phys. Rev. Lett. 89(18), 187902 (2002)
F. Deng, G. Long, and X. Liu, Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block, Phys. Rev. A 68(4), 042317 (2003)
M. Lucamarini and S. Mancini, Secure deterministic communication without entanglement, Phys. Rev. Lett. 94(14), 140501 (2005)
A. Zhu, Y. Xia, Q. Fan, and S. Zhang, Secure direct communication based on secret transmitting order of particles, Phys. Rev. A 73(2), 022338 (2006)
H. Lee, J. Lim, and H. Yang, Quantum direct communication with authentication, Phys. Rev. A 73(4), 042305 (2006)
T. Wang, Q. Wen, and F. Zhu, Controlled quantum secure direct communication with quantum encryption, Int. J. Quant. Inf. 6, 543 (2008)
C. Wang, F. Deng, Y. Li, X. Liu, and G. Long, Quantum secure direct communication with high dimension quantum superdense coding, Phys. Rev. A 71(4), 044305 (2005)
T. Gao, F. L. Yan, and Z. X. Wang, A simultaneous quantum secure direct communication scheme between the central party and other M parties, Chin. Phys. Lett. 22(10), 2473 (2005)
C. Wang, F. Deng, and G. Long, Multi-step quantum secure direct communication using multi-particle Green–Horne–Zeilinger state, Opt. Commun. 253(1–3), 15 (2005)
J. Wang, Q. Zhang, and C. Tang, Quantum secure direct communication based on order rearrangement of single photons, Phys. Lett. A 358(4), 256 (2006)
C. Qing-Yu, and L. Bai-Wen, Deterministic secure communication without using entanglement, Chin. Phys. Lett. 21(4), 601 (2004)
Q. Y. Cai, Eavesdropping on the two-way quantum communication protocols with invisible photons, Phys. Lett. A 351(1–2), 23 (2006)
G. L. Long, F. Deng, C. Wang, X. Li, K. Wen, and W. Wang, Quantum secure direct communication and deterministic secure quantum communication, Front. Phys. China 2(3), 251 (2007)
G. Q. He, J. Zhu, and G. Zeng, Quantum secure communication using continuous variable EPR correlations, Phys. Rev. A 73, 1 (2006)
Y. Chang, C. Xu, S. Zhang, and L. Yan, Controlled quantum secure direct communication and authentication protocol based on five-particle cluster state and quantum one-time pad, Chin. Sci. Bull. 59(21), 2541 (2014)
C. Yan, Z. Shi-Bin, and Y. Li-Li, A Bidirectional Quantum Secure Direct Communication Protocol Based on Five-Particle Cluster State, Chin. Phys. Lett. 30(9), 090301 (2013)
W. Li, J. Chen, X. Wang, and C. Li, Quantum Secure Direct Communication Achieved by Using Multi-Entanglement, Int. J. Theor. Phys. 54(1), 100 (2015)
J. Wang, Q. Zhang, and C. J. Tang, Multiparty controlled quantum secure direct communication using Greenberger–Horne–Zeilinger state, Opt. Commun. 266(2), 732 (2006)
X.- M. Xiu, L. Dong, Y.- J. Gao, and F. Chi, Quantum secure direct communication using six-particle maximally entangled states and teleportation, Commum. Theor. Phys. 51(3), 429 (2009)
P. Yadav, R. Srikanth, and A. Pathak, Twostep orthogonal-state-based protocol of quantum secure direct communication with the help of orderrearrangement technique, Quantum Inform. Process. 13(12), 2731 (2014)
X. Li and H. Barnum, Quantum authentication using entangled states, Int. J. Found. Comput. Sci. 15(04), 609 (2004)
N. Zhou, G. Zeng, W. Zeng, and F. Zhu, Cross-center quantum identification scheme based on teleportation and entanglement swapping, Opt. Commun. 254(4–6), 380 (2005)
D. R. Kuhn, A quantum cryptographic protocol with detection of compromised server, Quantum Inf. Comput. 5(7), 551 (2005)
X. Wen, Y. Liu, and N. Zhou, Secure quantum telephone, Opt. Commun. 275(1), 278 (2007)
M. Naseri, Eavesdropping on secure quantum telephone protocol with dishonest server, Opt. Commun. 282(16), 3375 (2009)
Y. Sun, Q. Y. Wen, F. Gao, and F. C. Zhu, Improving the security of secure quantum telephone against an attack with fake particles and local operations, Opt. Commun. 282(11), 2278 (2009)
D. Zhang and X. Li, Quantum authentication using orthogonal product states, in: Third International Conference on Natural Computation, ICNC 2007, Vol. 4, pp 608–612, IEEE
B. S. Shi, J. Li, J. M. Liu, X. F. Fan, and G. C. Guo, Quantum key distribution and quantum authentication based on entangled state, Phys. Lett. A 281(2–3), 83 (2001)
T. Wei, C. W. Tsai, and T. Hwang, Comment on quantum key distribution and quantum authentication based on entangled state, Int. J. Theor. Phys. 50(9), 2703 (2011)
P. Huang, J. Zhu, Y. Lu, and G. H. Zeng, Quantum identity authentication using Gaussian-modulated squeezed states, Int. J. Quant. Inf. 9(2), 701 (2011)
C. W. Tsai, T. S. Wei, and T. Hwang, One-way quantum authenticated secure communication using rotation operation, Commum. Theor. Phys. 56(6), 1023 (2011)
H. X. Ma, P. Huang, W. S. Bao, and G. H. Zeng, Continuous-variable quantum identity authentication based on quantum teleportation, Quantum Inform. Process. 15(6), 2605 (2016)
N. Penghao, C. Yuan, and L. Chong, Quantum authentication scheme based on entanglement swapping, Int. J. Theor. Phys. 55(1), 302 (2016)
M. Naseri, Revisiting quantum authentication scheme based on entanglement swapping, Int. J. Theor. Phys. 55(5), 2428 (2016)
G. J. Simmons, Message Authentication without secrecy: A secure communications problem uniquely solvable by asymmetric encryption techniques, 12th IEEE Annual Electronics and Aerospace Conference, Washington, USA, IEEE, pp 661–662, December, 1979
G. J. Simmons, Authentication theory/coding theory, Advances in Cryptology–Proceedings of Crypto 84, Paris, France, 196, (pp 411–431), Heidelberg: Springer, 1984
A. S. Holevo, Statistical problems in quantum physics, in: Proceedings of the second Japan-USSR Symposium on probability theory, 330, 104–119 (1973)
A. S. Holevo, The capacity of the quantum channel with general signal states, IEEE Trans. Inf. Theory 44(1), 269 (1998)
A. K. Ekert, Quantum cryptography based on Bell’s theorem, Phys. Rev. Lett. 67(6), 661 (1991)
C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels, Phys. Rev. Lett. 70(13), 1895 (1993)
F. G. Deng and G. L. Long, Bidirectional quantum key distribution protocol with practical faint laser pulses, Phys. Rev. A 70(1), 012311 (2004)
N. Gisin and S. Massar, Optimal quantum cloning machines, Phys. Rev. Lett. 79(11), 2153 (1997)
A. Peres, Separability criterion for density matrices, Phys. Rev. Lett. 77(8), 1413 (1996)
F. Giraldi and P. Grigolini, Quantum entanglement and entropy, Phys. Rev. A 64(3), 032310 (2001)
D. Boschi, S. Branca, F. De Martini, L. Hardy, and S. Popescu, Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein–Podolsky–Rosen channels, Phys. Rev. Lett. 80(6), 1121 (1998)
M. Hillery, V. Bužek, and A. Berthiaume, Quantum secret sharing, Phys. Rev. A 59(3), 1829 (1999)
M. A. Nielsen, Conditions for a class of entanglement transformations, Phys. Rev. Lett. 83(2), 436 (1999)
R. A. Bertlmann and A. Zeilinger (Eds.), Quantum (un) Speakables: From Bell to Quantum Information, Springer Science & Business Media 2013
A. Aspect, J. Dalibard, and G. Roger, Experimental test of Bell’s inequalities using time-varying analyzers, Phys. Rev. Lett. 49(25), 1804 (1982)
L. F. Wei, Y. X. Liu, M. J. Storcz, and F. Nori, Macroscopic Einstein–Podolsky–Rosen pairs in superconducting circuits, Phys. Rev. A 73(5), 052307 (2006)
J. S. Huang, C. H. Oh, and L. F. Wei, Testing tripartite Mermin inequalities by spectral joint measurements of qubits, Phys. Rev. A 83(6), 062108 (2011)
J. Uffink, Quadratic Bell inequalities as tests for multipartite entanglement, Phys. Rev. Lett. 88(23), 230406 (2002)
Z. Zhao, Y. A. Chen, A. N. Zhang, T. Yang, H. J. Briegel, and J. W. Pan, Experimental demonstration of five-photon entanglement and open-destination teleportation, Nature 430(6995), 54 (2004)
D. Leibfried, E. Knill, S. Seidelin, J. Britton, R. B. Blakestad, J. Chiaverini, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, R. Reichle, and D. J. Wineland, Creation of a six-atom “Schrödinger cat” state, Nature 438(7068), 639 (2005)
C. Y. Lu, X. Q. Zhou, O. Gühne, W. B. Gao, J. Zhang, Z. S. Yuan, A. Goebel, T. Yang, and J. W. Pan, Experimental entanglement of six photons in graph states, Nat. Phys. 3(2), 91 (2007)
Y. Xia, P. Lu, and Y. Zeng, Effective protocol for preparation of N-photon Greenberger–Horne–Zeilinger states with conventional photon detectors, Quantum Inform. Process. 11(2), 605 (2012)
S. Y. Hao, Y. Xia, J. Song, and N. B. An, One-step generation of multiatom Greenberger–Horne–Zeilinger states in separate cavities via adiabatic passage, Journal of the Optical Society of America B 30(2), 468 (2013)
Y. F. Huang, B.H. Liu, L. Peng, Y.H. Li, L. Li, C.F. Li, and G.C. Guo, Experimental generation of an eightphoton Greenberger–Horne–Zeilinger state, Nat. Commun. 2, 546 (2011)
A. Metwaly, M. Z. Rashad, F. A. Omara, and A. A. Megahed, Architecture of Point to Multipoint QKD Communication Systems (QKDP2MP). In 8th International Conference on Informatics and Systems (INFOS), Cairo, pp NW 25–31, IEEE, May, 2012
A. Farouk, F. Omara, M. Zakria, and A. Megahed, Secured IPsec multicast architecture based on quantum key distribution, in: The International Conference on Electrical and Bio-medical Engineering, Clean Energy and Green Computing, pp 38–47 (2015). The Society of Digital Information and Wireless Communication.
M. M. Wang, W. Wang, J. G. Chen, and A. Farouk, Secret sharing of a known arbitrary quantum state with noisy environment, Quantum Inform. Process. 14(11), 4211 (2015)
M. Naseri, S. Heidari, M. Baghfalaki, N. Fatahi, R. Gheibi, J. Batle, A. Farouk, and A. Habibi, A new secure quantum watermarking scheme, Optik 139, 77 (2017)
J. Batle, O. Ciftja, M. Naseri, M. Ghoranneviss, A. Farouk, and M. Elhoseny, Equilibrium and uniform charge distribution of a classical two-dimensional system of point charges with hard-wall confinement, Phys. Scr. 92(5), 055801 (2017)
H. Geurdes, K. Nagata, T. Nakamura, and A. Farouk, A note on the possibility of incomplete theory, arXiv: 1704.00005 (2017)
J. Batle, A. Farouk, M. Alkhambashi, and S. Abdalla, Multipartite correlation degradation in amplitudedamping quantum channels, J. Korean Phys. Soc. 70(7), 666 (2017)
J. Batle, M. Naseri, M. Ghoranneviss, A. Farouk, M. Alkhambashi, and M. Elhoseny, Shareability of correlations in multiqubit states: Optimization of nonlocal monogamy inequalities, Phys. Rev. A 95(3), 032123 (2017)
J. Batle, A. Farouk, M. Alkhambashi, and S. Abdalla, Entanglement in the linear-chain Heisenberg antiferromagnet Cu(C4H4N2)(NO3)2, Eur. Phys. J. B 90(3), 49 (2017)
J. Batle, M. Alkhambashi, A. Farouk, M. Naseri, and M. Ghoranneviss, Multipartite non-locality and entanglement signatures of a field-induced quantum phase transition, Eur. Phys. J. B 90(2), 31 (2017)
K. Nagata, T. Nakamura, J. Batle, S. Abdalla, and A. Farouk, Boolean approach to dichotomic quantum measurement theories, J. Korean Phys. Soc. 70(3), 229 (2017)
M. Abdolmaleky, M. Naseri, J. Batle, A. Farouk, and L. H. Gong, Red–Green–Blue multi-channel quantum representation of digital images, Optik 128, 121 (2017)
A. Farouk, M. Elhoseny, J. Batle, M. Naseri, and A. E. Hassanien, A proposed architecture for key management schema in centralized quantum network, in: Handbook of Research on Machine Learning Innovations and Trends, pp 997–1021, IGI Global, 2017
N. R. Zhou, J. F. Li, Z. B. Yu, L. H. Gong, and A. Farouk, New quantum dialogue protocol based on continuous-variable two-mode squeezed vacuum states, Quantum Inform. Process. 16(1), 4 (2017)
J. Batle, M. Abutalib, S. Abdalla, and A. Farouk, Persistence of quantum correlations in a XY spin-chain environment, Eur. Phys. J. B 89(11), 247 (2016)
J. Batle, M. Abutalib, S. Abdalla, and A. Farouk, Revival of Bell nonlocality across a quantum spin chain, Int. J. Quant. Inf. 14(07), 1650037 (2016)
J. Batle, C. R. Ooi, A. Farouk, M. Abutalib, and S. Abdalla, Do multipartite correlations speed up adiabatic quantum computation or quantum annealing? Quantum Inform. Process. 15(8), 3081 (2016)
J. Batle, A. Bagdasaryan, A. Farouk, M. Abutalib, and S. Abdalla, Quantum correlations in two coupled superconducting charge qubits, Int. J. Mod. Phys. B 30(19), 1650123 (2016)
J. Batle, C. R. Ooi, M. Abutalib, A. Farouk, and S. Abdalla, Quantum information approach to the azurite mineral frustrated quantum magnet, Quantum Inform. Process. 15(7), 2839 (2016)
J. Batle, C. R. Ooi, A. Farouk, and S. Abdalla, Nonlocality in pure and mixed n-qubit X states, Quantum Inform. Process. 15(4), 1553 (2016)
J. Batle, C. R. Ooi, A. Farouk, M. Abutalib, and S. Abdalla, Do multipartite correlations speed up adiabatic quantum computation or quantum annealing? Quantum Inform. Process. 15(8), 3081 (2016)
A. F. Metwaly, M. Z. Rashad, F. A. Omara, and A. A. Megahed, Architecture of multicast network based on quantum secret sharing and measurement, International Research Journal of Engineering and Technology 02(03), 2336 (2015)
Acknowledgements
J. Batle acknowledges fruitful discussions with Joana Rosselló, Maria del Mar Batle and Regina Batle.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Rights and permissions
About this article
Cite this article
Farouk, A., Batle, J., Elhoseny, M. et al. Robust general N user authentication scheme in a centralized quantum communication network via generalized GHZ states. Front. Phys. 13, 130306 (2018). https://doi.org/10.1007/s11467-017-0717-3
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11467-017-0717-3