Frontiers of Physics

, 12:124205 | Cite as

Spectral blueshift as a three-dimensional structure-ordering process

Research article
  • 46 Downloads

Abstract

The transmission spectra of a TiO2-silicone oil suspension in an increasing external electric field are studied. As the electric field increases, the structure of the suspension changes from a disordered one to an ordered one. Interestingly, the transmission spectra blueshift in this structure-ordering process. Furthermore, the relative transmission spectra exhibit Fano-like asymmetric line shapes. The deviation ratio of each asymmetric line shape increases monotonously as the disorder of the suspension decreases. We suggest that this blueshift phenomenon can be used to characterize the disorder strength of three-dimensional systems.

Keywords

disordered medium light propagation transmission spectrum blueshift 

Notes

Acknowledgements

We thank Biqin Dong, Jian Chang, Haiwei Yin, Yafeng Zhang, Yiwen Zhang, Xiangying Shen, Yanwen Tan, and Jian Zi for their fruitful helps and discussions. The financial support of the Science and Technology Commission of Shanghai Municipality (Grant No. 16ZR1445100) is gratefully acknowledged.

References

  1. 1.
    M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th Ed., Cambridge: Academic Press, 1999CrossRefMATHGoogle Scholar
  2. 2.
    Q. Gong and X. Hu, Photonic Crystals: Principles and Applications, Pan Standford: Academic Press, 2014Google Scholar
  3. 3.
    J. Y. Huang and L. W. Zhou, Exceptional enhancement of localization effect in a one-dimensional multilayer system with destructive weak disorder strength, Opt. Lett. 36(7), 1305 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, Localization of light in a disordered medium, Nature 390(6661), 671 (1997)ADSCrossRefGoogle Scholar
  5. 5.
    S. Zhang, J. Park, V. Milner, and A. Z. Genack, Photon delocalization transition in dimensional crossover in layered media, Phys. Rev. Lett. 101(18), 183901 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    A. A. Fernández-Marín, J. A. Méndez-Bermúdez, J. Carbonell, F. Cervera, J. Sánchez-Dehesa, and V. A. Gopar, Beyond Anderson localization in 1D: Anomalous localization of microwaves in random waveguides, Phys. Rev. Lett. 113(23), 233901 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    L. Levi, M. Rechtsman, B. Freedman, T. Schwartz, O. Manela, and M. Segev, Disorder-enhanced transport in photonic quasi-crystals, Science 332(6037), 1541 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    T. Schwartz, G. Bartal, S. Fishman, and M. Segev, Transport and Anderson localization in disordered twodimensional photonic lattices, Nature 446(7131), 52 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    Y. Lahini, A. Avidan, F. Pozzi, M. Sorel, R. Morandotti, D. N. Christodoulides, and Y. Silberberg, Anderson localization and nonlinearity in one-dimensional disordered photonic lattices, Phys. Rev. Lett. 100(1), 013906 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    Y. Lahini, R. Pugatch, F. Pozzi, M. Sorel, R. Morandotti, N. Davidson, and Y. Silberberg, Observation of a localization transition in quasiperiodic photonic lattices, Phys. Rev. Lett. 103(1), 013901 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    P. Ni, P. Zhang, X. Qi, J. Yang, Z. Chen, and W. Man, Light localization and nonlinear beam transmission in specular amorphous photonic lattices, Opt. Express 24(3), 2420 (2016)ADSCrossRefGoogle Scholar
  12. 12.
    P. Sebbah, B. Hu, J. M. Klosner, and A. Z. Genack, Extended quasimodes within nominally localized random waveguides, Phys. Rev. Lett. 96(18), 183902 (2006)ADSCrossRefGoogle Scholar
  13. 13.
    K. Y. Bliokh, Y. P. Bliokh, V. Freilikher, A. Z. Genack, B. Hu, and P. Sebbah, Localized modes in open onedimensional dissipative random systems, Phys. Rev. Lett. 97(24), 243904 (2006)ADSCrossRefGoogle Scholar
  14. 14.
    I. V. Shadrivov, K. Y. Bliokh, Y. P. Bliokh, V. Freilikher, and Y. S. Kivshar, Bistability of Anderson localized states in nonlinear random media, Phys. Rev. Lett. 104(12), 123902 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    J. Bertolotti, S. Gottardo, D. S. Wiersma, M. Ghulinyan, and L. Pavesi, Optical necklace states in Anderson localized 1D systems, Phys. Rev. Lett. 94(11), 113903 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    M. Störzer, P. Gross, C. M. Aegerter, and G. Maret, Observation of the critical regime near Anderson localization of light, Phys. Rev. Lett. 96(6), 063904 (2006)ADSCrossRefGoogle Scholar
  17. 17.
    J. Wang and A. Z. Genack, Transport through modes in random media, Nature 471(7338), 345 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    T. Sperling, W. B?hrer, C. M. Aegerter, and G. Maret, Direct determination of the transition to localization of light in three dimensions, Nat. Photonics 7(1), 48 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    A. N. Poddubny, M. V. Rybin, M. F. Limonov, and Y. S. Kivshar, Fano interference governs wave transport in disordered systems, Nat. Commun. 3, 914 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    J. Topolancik, B. Ilic, and F. Vollmer, Experimental observation of strong photon localization in disordered photonic crystal waveguides, Phys. Rev. Lett. 99(25), 253901 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    E. Lidorikis, M. M. Sigalas, E. N. Economou, and C. M. Soukoulis, Gap deformation and classical wave localization in disordered two-dimensional photonic-band-gap materials, Phys. Rev. B 61(20), 13458 (2000)ADSCrossRefGoogle Scholar
  22. 22.
    J. Y. Huang, B. Q. Dong, and L. W. Zhou, Non-uniform ensembles of diverse resonances in one-dimensional layered media, Opt. Lett. 36(13), 2477 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    Z. Shi, M. Davy, and A. Z. Genack, Statistics and control of waves in disordered media, Opt. Express 23(9), 12293 (2015)ADSCrossRefGoogle Scholar
  24. 24.
    P. W. Anderson, Absence of diffusion in certain random lattices, Phys. Rev. 109(5), 1492 (1958)ADSCrossRefGoogle Scholar
  25. 25.
    H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, Random laser action in semiconductor powder, Phys. Rev. Lett. 82(11), 2278 (1999)ADSCrossRefGoogle Scholar
  26. 26.
    C. Toninelli, E. Vekris, G. A. Ozin, S. John, and D. S. Wiersma, Exceptional reduction of the diffusion constant in partially disordered photonic crystals, Phys. Rev. Lett. 101(12), 123901 (2008)ADSCrossRefGoogle Scholar
  27. 27.
    M. V. Rybin, A. B. Khanikaev, M. Inoue, K. B. Samusev, M. J. Steel, G. Yushin, and M. F. Limonov, Fano resonance between Mie and Bragg scattering in phononic crystals, Phys. Rev. Lett. 103(2), 023901 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    U. Fano, Effect of configuration interaction on intensities and phase shifts, Phys. Rev. 124(6), 1866 (1961)ADSCrossRefMATHGoogle Scholar
  29. 29.
    M. F. Smith, K. Setwong, R. Tongpool, D. Onkaw, S. Na-phattalung, S. Limpijumnong, and S. Rujirawat, Identification of bulk and surface sulfur impurities in TiO2 by synchrotron X-ray absorption near edge structure, Appl. Phys. Lett. 91(14), 142107 (2007)ADSCrossRefGoogle Scholar
  30. 30.
    W. Wen, X. Huang, and P. Sheng, Electrorheological fluids: Structures and mechanisms, Soft Matter 4(2), 200 (2008)ADSCrossRefGoogle Scholar
  31. 31.
    T. Chen, R. N. Zitter, and R. Tao, Laser diffraction determination of the crystalline structure of an electrorheological fluid, Phys. Rev. Lett. 68(16), 2555 (1992)ADSCrossRefGoogle Scholar
  32. 32.
    C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles, New York: Wiley, 1983, page 118Google Scholar
  33. 33.
    W. J. Tian, M. K. Liu, and J. P. Huang, Origin of the reduced attracting force between a rotating dielectric particle and a stationary one, Phys. Rev. E 75(2), 021401 (2007)ADSCrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory of Micro and Nano Photonic Structures (MOE)Fudan UniversityShanghaiChina
  2. 2.Collaborative Innovation Center of Advanced MicrostructuresNanjingChina

Personalised recommendations