Advertisement

Frontiers of Physics

, 12:126801 | Cite as

Nontrivial standing wave state in frequency-weighted Kuramoto model

Research article

Abstract

Synchronization in a frequency-weighted Kuramoto model with a uniform frequency distribution is studied. We plot the bifurcation diagram and identify the asymptotic coherent states. Numerical simulations show that the system undergoes two first-order transitions in both the forward and backward directions. Apart from the trivial phase-locked state, a novel nonstationary coherent state, i.e., a nontrivial standing wave state is observed and characterized. In this state, oscillators inside the coherent clusters are not frequency-locked as they would be in the usual standing wave state. Instead, their average frequencies are locked to a constant. The critical coupling strength from the incoherent state to the nontrivial standing wave state can be obtained by performing linear stability analysis. The theoretical results are supported by the numerical simulations.

Keywords

synchronization Kuramoto model nonstationary 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant No. 11135001.

References

  1. 1.
    A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences, Cambridge: Cambridge University Press, 2003MATHGoogle Scholar
  2. 2.
    L. Huang, Y.-C. Lai, K. Park, X. G. Wang, C. H. Lai, and R. A. Gatenby, Synchronization in complex clustered networks, Front. Phys. China 2(4), 446 (2007)ADSCrossRefGoogle Scholar
  3. 3.
    Y. Kuramoto, in: International Symposium on Mathematical Problems in Theoretical Physics, edited by H. Araki, Lecture Notes in Physics Vol. 39, Berlin: Springer-Verlag, 1975Google Scholar
  4. 4.
    S. H. Strogatz, From Kuramoto to Crawford: Exploring the onset of synchronization in populations of coupled oscillators, Physica D 143(1–4), 1 (2000)ADSMathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    J. D. Crawford, Amplitude expansions for instabilities in populations of globally-coupled oscillators, J. Stat. Phys. 74(5–6), 1047 (1994)ADSMathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    J. Gómez-Gardeñes, S. Gomez, A. Arenas, and Y. Moreno, Explosive synchronization transitions in scalefree networks, Phys. Rev. Lett. 106(12), 128701 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    Y. Zou, T. Pereira, M. Small, Z. Liu, and J. Kurths, Basin of attraction determines hysteresis in explosive synchronization, Phys. Rev. Lett. 112(11), 114102 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    X. Zhang, X. Hu, J. Kurths, and Z. Liu, Explosive synchronization in a general complex network, Phys. Rev. E 88(1), 010802(R) (2013)ADSCrossRefGoogle Scholar
  9. 9.
    X. Hu, S. Boccaletti, W. Huang, X. Zhang, Z. Liu, S. Guan, and C.H. Lai, Exact solution for the first-order synchronization transition in a generalized Kuramoto model, Sci. Rep. 4, 7262 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    W. Zhou, L. Chen, H. Bi, X. Hu, Z. Liu, and S. Guan, Explosive synchronization with asymmetric frequency distribution, Phys. Rev. E 92(1), 012812 (2015)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    X. Zhang, S. Boccaletti, S. Guan, and Z. Liu, Explosive synchronization in adaptive and multilayer networks, Phys. Rev. Lett. 114(3), 038701 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    X. Huang, J. Gao, Y. T. Sun, Z. G. Zheng, and C. Xu, Effects of frustration on explosive synchronization, Front. Phys. 11(6), 110504 (2016)CrossRefGoogle Scholar
  13. 13.
    H. Hong and S. H. Strogatz, Kuramoto model of coupled oscillators with positive and negative coupling parameters: An example of conformist and contrarian oscillators, Phys. Rev. Lett. 106(5), 054102 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    H. Bi, X. Hu, S. Boccaletti, X. Wang, Y. Zou, Z. Liu, and S. Guan, Coexistence of quantized, time dependent, clusters in globally coupled oscillators, Phys. Rev. Lett. 117(20), 204101 (2016)ADSCrossRefGoogle Scholar
  15. 15.
    E. A. Martens, E. Barreto, S. H. Strogatz, E. Ott, P. So, and T. M. Antonsen, Exact results for the Kuramoto model with a bimodal frequency distribution, Phys. Rev. E 79(2), 026204 (2009)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    E. Ott and T. M. Antonsen, Low dimensional behavior of large systems of globally coupled oscillators, Chaos 18(3), 037113 (2008)ADSMathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    T. Qiu, S. Boccaletti, I. Bonamassa, Y. Zou, J. Zhou, Z. Liu, and S. Guan, Synchronization and Bellerophon states in conformist and contrarian oscillators, Sci. Rep. 6, 36713 (2016)ADSCrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of PhysicsEast China Normal UniversityShanghaiChina
  2. 2.Nantong Middle SchoolNantongChina
  3. 3.No. 4 Middle School Affiliated to ECNUShanghaiChina

Personalised recommendations