Frontiers of Physics

, 12:128908 | Cite as

Structural effects and competition mechanisms targeting the interactions between p53 and MDM2 for cancer therapy

Research article
Part of the following topical collections:
  1. Soft-Matter Physics and Complex Systems

Abstract

Approximately half of all human cancers show normal TP53 gene expression but aberrant overexpression of MDM2 and/or MDMX. This fact suggests a promising cancer therapeutic strategy in targeting the interactions between p53 and MDM2/MDMX. To help realize the goal of developing effective inhibitors to disrupt the p53–MDM2/MDMX interaction, we systematically investigated the structural and interaction characteristics of p53 with inhibitors of its interactions with MDM2 and MDMX from an atomistic perspective using stochastic molecular dynamics simulations. We found that some specific α helices in the structures of MDM2 and MDMX play key roles in their binding to inhibitors, and that the hydrogen bond formed by the Trp23 residue of p53 with its counterpart in MDM2 or MDMX determines the dynamic competition processes of the disruption of the MDM2–p53 interaction and replacement of p53 from the MDM2–p53 complex in vivo. The results reported in this paper are expected to provide basic information for designing functional inhibitors and realizing new strategies of cancer gene therapy.

Keywords

p53 MDMX MDM2 molecular dynamics simulation inhibitors cancer therapy 

Notes

Acknowledgments

This work was supported by the National Nature Science Foundation of China (Grant Nos. 11675018, 10975019, 11605038, and 11545014), Beijing Natural Science Foundation (Grant No. 1172008), and the Fundamental Research Funds for the Central Universities (Grant No. 2015KJJCB01).

References

  1. 1.
    G. M. Popowicz, A. Dömling, and T. A. Holak, The Structure-Based Design of MDM2/MDMX-p53 Inhibitors Gets Serious, Angew. Chem. Int. Ed. 50(12), 2680 (2011)CrossRefGoogle Scholar
  2. 2.
    X. Wang, J. Wang, and X. Jiang, MDMX protein is essential for MDM2 protein-mediated p53 polyubiquitination, J. Biochem. 286, 23725 (2011)Google Scholar
  3. 3.
    L. T. Vassilev, B. T. Vu, B. Graves, D. Carvajal, F. Podlaski, Z. Filipovic, N. Kong, U. Kammlott, C. Lukacs, C. Klein, N. Fotouhi, and E. A. Liu, In vivo activation of the p53 pathway by small-molecule antagonists of MDM2, Science 303(5659), 844 (2004)ADSCrossRefGoogle Scholar
  4. 4.
    P. H. Kussie, S. Gorina, V. Marechal, B. Elenbaas, J. Moreau, A. J. Levine, and N. P. Pavletich, Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain, Science 274(5289), 948 (1996)ADSCrossRefGoogle Scholar
  5. 5.
    P. Chène, Inhibiting the p53-MDM2 interaction: an important target for cancer therapy, Nat. Rev. Cancer 3(2), 102 (2003)CrossRefGoogle Scholar
  6. 6.
    M. R. Arkin and J. A. Wells, Small-molecule inhibitors of protein-protein interactions progressing towards the dream, Nat. Rev. Drug Discov. 3(4), 301 (2004)CrossRefGoogle Scholar
  7. 7.
    D. C. Fry and L. T. Vassilev, Targeting protein-protein interactions for cancer therapy, J. Mol. Med. (Berl.) 83(12), 955 (2005)CrossRefGoogle Scholar
  8. 8.
    M. Bista, S. Wolf, K. Khoury, K. Kowalska, Y. Huang, E. Wrona, M. Arciniega, G. M. Popowicz, T. A. Holak, and A. Dömling, Transient protein states in designing inhibitors of the p53-MDM2 interaction, Structure 21(12), 2143 (2013)CrossRefGoogle Scholar
  9. 9.
    K. K. Hoe, C. S. Verma, and D. P. Lane, Drugging the p53 pathway: Understanding the route to clinical efficacy, Nat. Rev. Drug Discov. 13(3), 217 (2014)CrossRefGoogle Scholar
  10. 10.
    T. Saha, R. K. Kar, and G. Sa, Structural and sequential context of p53: A review of experimental and theoretical evidence, Prog. Biophys. Mol. Biol. 117(2–3), 250 (2015)CrossRefGoogle Scholar
  11. 11.
    S. Tovar, B. Graves, K. Packman, Z. Filipovic, B. H. M. Xia, C. Tardell, R. Garrido, E. Lee, K. Kolinsky, K. H. To, M. Linn, F. Podlaski, P. Wovkulich, B. Vu, and L. T. Vassilev, MDM2 small-molecule antagonist RG7112 activates p53 signaling and regresses human tumors in preclinical cancer models, Cancer Res. 73(8), 2587 (2013)CrossRefGoogle Scholar
  12. 12.
    L. Y. Qin, F. Yang, C. Zhou, Y. Chen, H. Zhang, and Z. Su, Efficient reactivation of p53 in cancer cells by a dual MDMX/MDM2 inhibitor, J. Am. Chem. Soc. 136(52), 18023 (2014)CrossRefGoogle Scholar
  13. 13.
    U. M. Moll and O. Petrenko, The MDM2-p53 interaction, Mol. Cancer Res. 1, 1001 (2003)Google Scholar
  14. 14.
    R. Stad, N. A. Little, D. P. Xirodimas, R. Frenk, A. J. van der Eb, D. P. Lane, M. K. Saville, and A. G. Jochemsen, MDMX stabilizes p53 and MDM2 via two distinct mechanisms, EMBO Rep. 2(11), 1029 (2001)CrossRefGoogle Scholar
  15. 15.
    S. Shangary and S. Wang, Small-molecule inhibitors of the MDM2-p53 protein-protein interaction to reactivate p53 function: A novel approach for cancer therapy, Annu. Rev. Pharmacol. Toxicol. 49(1), 223 (2009)CrossRefGoogle Scholar
  16. 16.
    M. D. M. AbdulHameed, A. Hamza, and C. G. Zhan, Microscopic modes and free energies of 3-phosphoinositide-dependent kinase-1 (PDK1) binding with celecoxib and other inhibitors, J. Phys. Chem. B 110(51), 26365 (2006)CrossRefGoogle Scholar
  17. 17.
    G. Popowicz, A. Czarna, and T. Holak, Structure of the human Mdmx protein bound to the p53 tumor suppressor transactivation domain, Cell Cycle 7(15), 2441 (2008)CrossRefGoogle Scholar
  18. 18.
    B. Anil, C. Riedinger, J. A. Endicott, and M. E. M. Noble, The structure of an MDM2-Nutlin-3a complex solved by the use of a validated MDM2 surface-entropy reduction mutant, Acta Crystallogr. D Biol. Crystallogr. 69(8), 1358 (2013)CrossRefGoogle Scholar
  19. 19.
    W. J. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein, Comparison of simple potential functions for simulating liquid water, J. Chem. Phys. 79(2), 926 (1983)ADSCrossRefGoogle Scholar
  20. 20.
    W. Humphrey, A. Dalke, and K. Schulten, VMD: Visual molecular dynamics, J. Mol. Graph. 14(1), 33 (1996)CrossRefGoogle Scholar
  21. 21.
    J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R. D. Skeel, L. Kalé, and K. Schulten, Scalable molecular dynamics with NAMD, J. Comput. Chem. 26(16), 1781 (2005)CrossRefGoogle Scholar
  22. 22.
    A. D. Jr MacKerell, D. Bashford, M. Bellott, R. L. Jr Dunbrack, J. D. Evanseck, et al., All-atom empirical potential for molecular modeling and dynamics studies of proteins, J. Phys. Chem. 102(18), 3586 (1998)CrossRefGoogle Scholar
  23. 23.
    S. Shangary, D. Qin, D. McEachern, M. Liu, R. S. Miller, S. Qiu, Z. Nikolovska-Coleska, K. Ding, G. Wang, J. Chen, D. Bernard, J. Zhang, Y. Lu, Q. Gu, R. B. Shah, K. J. Pienta, X. Ling, S. Kang, M. Guo, Y. Sun, D. Yang, and S. Wang, Temporal activation of p53 by a specific MDM2 inhibitor is selectively toxic to tumors and leads to complete tumor growth inhibition, Proc. Natl. Acad. Sci. USA 105(10), 3933 (2008)ADSCrossRefGoogle Scholar
  24. 24.
    B. Hu, D. M. Gilkes, B. Farooqi, S. M. Sebti, and J. Chen, MDMX overexpression prevents p53 activation by the MDM2 inhibitor nutlin, J. Biol. Chem. 281(44), 33030 (2006)CrossRefGoogle Scholar
  25. 25.
    N. A. Laurie, S. L. Donovan, C. S. Shih, J. Zhang, N. Mills, C. Fuller, A. Teunisse, S. Lam, Y. Ramos, A. Mohan, D. Johnson, M. Wilson, C. Rodriguez-Galindo, M. Quarto, S. Francoz, S. M. Mendrysa, R. Kiplin Guy, J. C. Marine, A. G. Jochemsen, and M. A. Dyer, Inactivation of the p53 pathway in retinoblastoma, Nature 444(7115), 61 (2006)ADSCrossRefGoogle Scholar
  26. 26.
    V. Hariharan and W. O. Hancock, Insights into the mechanical properties of the kinesin neck linker domain from sequence analysis and molecular dynamics simulations, Cell. Mol. Bioeng. 2(2), 177 (2009)CrossRefGoogle Scholar
  27. 27.
    J. D. Oliner, K. W. Kinzler, P. S. Meltzer, D. L. George, and B. Vogelstein, Amplification of a gene encoding a p53-associated protein in human sarcomas, Nature 358(6381), 80 (1992)ADSCrossRefGoogle Scholar
  28. 28.
    J. D. Oliner, J. A. Pietenpol, S. Thiagalingam, J. Gyuris, K. W. Kinzler, and B. Vogelstein, Oncoprotein MDM2 conceals the activation domain of tumour suppressor p53, Nature 362(6423), 857 (1993)ADSCrossRefGoogle Scholar
  29. 29.
    S. M. Abdur Rauf, H. Takaba, C. A. Del Carpio, and A. Miyamoto, How Nutlin-3 disrupts the MDM2–p53 interaction: A theoretical investigation, Med. Chem. Res. 23(4), 1998 (2014)CrossRefGoogle Scholar
  30. 30.
    M. A. McCoy, J. J. Gesell, M. M. Senior, and D. F. Wyss, Flexible lid to the p53-binding domain of human MDM2: Implications for p53 regulation, Proc. Natl. Acad. Sci. USA 100(4), 1645 (2003)ADSCrossRefGoogle Scholar
  31. 31.
    S. A. Showalter, L. Bruschweiler-Li, E. Johnson, F. Zhang, and R. Brüschweiler, quantitative lid dynamics of MDM2 reveals differential ligand binding modes of the p53-binding cleft, J. Am. Chem. Soc. 130(20), 6472 (2008)CrossRefGoogle Scholar
  32. 32.
    C. Y. Zhan, K. Varney, W. Y. Yuan, L. Zhao, and W. Lu, Interrogation of MDM2 phosphorylation in p53 activation using native chemical ligation: The functional role of Ser17 phosphorylation in MDM2 reexamined, J. Am. Chem. Soc. 134(15), 6855 (2012)CrossRefGoogle Scholar
  33. 33.
    A. C. Joerger and A. R. Fersht, Structural biology of the tumor suppressor p53, Annu. Rev. Biochem. 77(1), 557 (2008)CrossRefGoogle Scholar
  34. 34.
    K. M. ElSawy, C. S. Verma, T. L. Joseph, D. P. Lane, R. Twarock, and L. Caves, On the interaction mechanisms of a p53 peptide and nutlin with the MDM2 and MDMX proteins: A Brownian dynamics study, Cell Cycle 12(3), 394 (2013)CrossRefGoogle Scholar
  35. 35.
    L. Hernychova, P. Man, C. Verma, J. Nicholson, C.A. Sharma, E. Ruckova, J. Y. Teo, K. Ball, B. Vojtesek, and T. R. Hupp, Identification of a second Nutlin-3 responsive interaction site in the N-terminal domain of MDM2 using hydrogen/deuterium exchange mass spectrometry, Proteomics 13(16), 2512 (2013)CrossRefGoogle Scholar
  36. 36.
    K. Puszynski, A. Gandolfi, and A. d’Onofrio, The pharmacodynamics of the p53-MDM2 targeting drug nutlin: The role of gene-switching noise, PLOS Comput. Biol. 10(12), e1003991 (2014)ADSCrossRefGoogle Scholar
  37. 37.
    S. X. Liu, Y. Z. Geng, and S. W. Yan, Researches on inhibitors of p53-MDM2 interaction, Prog. Biochem. Biophys. (to be published)Google Scholar
  38. 38.
    B. Liu, S. W. Yan, and X. F. Gao, Noise amplification in human tumor suppression following gamma irradiation, PLoS One 6(8), e22487 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.College of Nuclear Science and TechnologyBeijing Normal UniversityBeijingChina
  2. 2.School of ScienceHebei University of TechnologyTianjinChina
  3. 3.Beijing Radiation CenterBeijingChina

Personalised recommendations