Frontiers of Physics

, 12:128701 | Cite as

Ordered quasi-two-dimensional structure of nanoparticles in semiflexible ring polymer brushes under compression

  • Yunfeng Hua
  • Zhenyu Deng
  • Yangwei Jiang
  • Linxi Zhang
Research Article
Part of the following topical collections:
  1. Soft-Matter Physics and Complex Systems


Molecular dynamics simulations of a coarse-grained bead-spring model of ring polymer brushes under compression are presented. Flexible polymer brushes are always disordered during compression, whereas semiflexible polymer brushes tend to be ordered under sufficiently strong compression. Further, the polymer monomer density of the semiflexible polymer brush is very high near the brush surface, inducing a peak value of the free energy near the surface. Therefore, when nanoparticles are compressed in semiflexible ring polymer brushes, they tend to exhibit a closely packed single-layer structure between the brush surface and the impenetrable wall, and a quasi-two-dimensional ordered structure near the brush surface is formed under strong compression. These findings provide a new approach to designing responsive applications.


molecular dynamics simulation semiflexible ring polymer brushes nanoparticle compression ordered structure 



This research was financially supported by the National Natural Science Foundation of China (Grant Nos. 21374102, 21674082, and 21674096). We are grateful to the reviewers of our manuscript for their detailed and insightful comments and suggestions.


  1. 1.
    M. V. Reddy, T. Yu, C. H. Sow, Z. X. Shen, C. T. Lim, G. V. S. Rao, and B. V. R. Chowdari, Fe2O3 nanoflakes as an anode material for Li-ion batteries, Adv. Funct. Mater. 17(7), 2792 (2006)Google Scholar
  2. 2.
    T. Yu, Y. W. Zhu, X. J. Xu, Z. X. Shen, P. Chen, C. T. Lim, J. T. L. Thong, and C. H. Sow, Controlled growth and field-emission properties of cobalt oxide nanowalls, Adv. Mater. 17(13), 1595 (2005)CrossRefGoogle Scholar
  3. 3.
    X. D. Gao, X. M. Li, W. D. Yu, F. Peng, and C. Y. Zhang, Oversized hexagonal nanosheets of layered zinc hydroxysulfates via the hexamethylenetetraminemediated solution route, Mater. Res. Bull. 41(3), 608 (2006)CrossRefGoogle Scholar
  4. 4.
    X. Huang, S. Tang, X. Mu, Y. Dai, G. Chen, Z. Zhou, F. Ruan, Z. Yang, and N. Zheng, Freestanding palladium nanosheets with plasmonic and catalytic properties, Nat. Nanotechnol. 6(1), 28 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    H. L. Wang, H. S. Casalongue, Y. Y. Liang, and H. J. Dai, NiOH2 nanoplates grown on graphene as advanced electrochemical pseudocapacitormaterials, J. Am. Chem. Soc. 132(21), 7472 (2010)CrossRefGoogle Scholar
  6. 6.
    S. H. Chen and D. L. Carroll, Silver nanoplates: Size control in two dimensions and formation mechanisms, J. Phys. Chem. B 108(18), 5500 (2004)CrossRefGoogle Scholar
  7. 7.
    X. P. Sun, S. J. Dong, and E. Wang, Large-scale synthesis of micrometer-scale single-crystalline Au plates of nanometer thickness by a wet-chemical route, Angew. Chem. Int. Ed. 43(46), 6360 (2004)CrossRefGoogle Scholar
  8. 8.
    A. K. Geim, Graphene: Status and prospects, Science 324(5934), 1530 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    M. Q. Yang, N. Zhang, M. Pagliaro, and Y. J. Xu, Artificial photosynthesis over graphene-semiconductor composites: Are we getting better? Chem. Soc. Rev. 43(24), 8240 (2014)CrossRefGoogle Scholar
  10. 10.
    S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, et al., Challenges and opportunities in two-dimensional materials beyond graphene, ACS Nano 7(4), 2898 (2013)CrossRefGoogle Scholar
  11. 11.
    J. Yu, Y. Yu, P. Zhou, W. Xiao, and B. Cheng, Morphology dependent photocatalytic H2-production Activity of CdS, Appl. Catal. B 184(2), 156 (2014)Google Scholar
  12. 12.
    F. Dong, L. Wu, Y. Sun, M. Fu, Z. Wu, and S. C. Lee, Efficient synthesis of polymeric g-C3N4 layered materials as novel efficient visible light driven photocatalysts, J. Mater. Chem. 21(39), 15171 (2011)CrossRefGoogle Scholar
  13. 13.
    J. Hong, Y. Wang, Y. Wang, W. Zhang, and R. Xu, Noble-metal-free NiS/C3N4 for efficient photocatalytic hydrogen evolution from water, ChemSusChem 6(12), 2263 (2013)CrossRefGoogle Scholar
  14. 14.
    X. Song, J. Hu, and H. Zeng, Two-dimensional semiconductors: Recent progress and future perspectives, J. Mater. Chem. 1, 2952 (2013)Google Scholar
  15. 15.
    S. Khanchandani, S. Kundu, A. Patra, and A. K. Ganguli, Shell thickness dependent photocatalytic properties of ZnO/CdS core-shell nanorods, J. Phys. Chem. C 116(44), 23653 (2012)CrossRefGoogle Scholar
  16. 16.
    Y. Xu, W. Zhao, R. Xu, Y. Shi, and B. Zhang, Synthesis of ultrathin CdS nanosheets as efficient visiblelight- driven water splitting photocatalysts for hydrogen evolution, Chem. Commun. 49(84), 9803 (2013)CrossRefGoogle Scholar
  17. 17.
    Y. Yu, P. Zhang, L. Guo, Z. Chen, Q. Wu, Y. Ding, W. Zheng, and Y. Cao, The design of TiO2 nanostructures (nanoparticle, nanotube, and nanosheet) and their photocatalytic activity, J. Phys. Chem. C 118(24), 12727 (2014)Google Scholar
  18. 18.
    I. Y. Kim, Y. K. Jo, J. M. Lee, L. Wang, and S. J. Hwang, Unique advantages of exfoliated 2D nanosheets for tailoring the functionalities of nanocomposites, J. Phys. Chem. Lett. 5(23), 4149 (2014)CrossRefGoogle Scholar
  19. 19.
    T. Sagawa, S. Yoshikawa, and H. Imahori, Onedimensional nanostructured semiconducting materials for organic photovoltaics, J. Phys. Chem. Lett. 1(7), 1020 (2010)CrossRefGoogle Scholar
  20. 20.
    L. Yuan, M. Q. Yang, and Y. J. Xu, Tuning the surface charge of graphene for self-Assembly synthesis of a SnNb2O6 nanosheet-graphene (2D-2D) nanocomposite with enhanced visible light photoactivity, Nanoscale 6(12), 6335 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    S. Milner, Polymer brushes, Science 251(4996), 905 (1991)ADSCrossRefGoogle Scholar
  22. 22.
    A. Halperin, M. Tirrell, and T. P. Lodge, Tethered chains in polymer microstructures, Adv. Polym. Sci. 100, 31 (1992)CrossRefGoogle Scholar
  23. 23.
    G. S. Grest, Normal and shear forces between polymer brushes, Adv. Polym. Sci. 138, 149 (1999)CrossRefGoogle Scholar
  24. 24.
    R. C. Advincula, W. J. Brittain, K. C. Caster, and J. Rühe, Polymer Brushes, Weinheim: Wiley VCH, pp 427–440 (2004)CrossRefGoogle Scholar
  25. 25.
    G. S. Grest and K. Kremer, Molecular dynamics simulation for polymers in the presence of a heat bath, Phys. Rev. A 33(5), 3628 (1986)ADSCrossRefGoogle Scholar
  26. 26.
    A. Brasiello, S. Crescitelli, and G. Milano, Development of a coarse-grained model for simulations of tridecanoin liquid-solid phase transitions, Phys. Chem. Chem. Phys. 13(37), 16618 (2011)CrossRefGoogle Scholar
  27. 27.
    T. Carlsson, N. Kamerlin, G. A. Arteca, and C. Elvingson, Brownian dynamics of a compressed polymer brush model: Off-equilibrium response as a function of surface coverage and compression rate, Phys. Chem. Chem. Phys. 13(35), 16084 (2011)CrossRefGoogle Scholar
  28. 28.
    I. G. Elliott, T. L. Kuhl, and R. Faller, Molecular simulation study of the structure of high density polymer brushes in good solvent, Macromolecules 43(21), 9131 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys. 117(1), 1 (1995)ADSCrossRefMATHGoogle Scholar
  30. 30.
    W. Humphrey, A. Dalke, and K. Schulten, VMD–Visual molecular dynamics, J. Mol. Graph. 14(1), 33 (1996)CrossRefGoogle Scholar
  31. 31.
    Y. F. Hua, L. X. Zhang, and L. Zhang, Compressiondriven migration of nanoparticles in semiflexible polymer brushes, Polymer 83(9), 67 (2016)CrossRefGoogle Scholar
  32. 32.
    A. Milchev and K. Binder, Unconventional ordering behavior of semi-flexible polymers in dense brushes under compression, Soft Matter 10(21), 3783 (2014)ADSCrossRefGoogle Scholar
  33. 33.
    G. M. Torrie and J. P. Valleau, Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling, J. Comput. Phys. 23(2), 187 (1977)ADSCrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Yunfeng Hua
    • 1
  • Zhenyu Deng
    • 1
  • Yangwei Jiang
    • 1
  • Linxi Zhang
    • 1
  1. 1.Department of PhysicsZhejiang UniversityHangzhouChina

Personalised recommendations