Advertisement

Frontiers of Physics

, 12:128906 | Cite as

Network reconstructions with partially available data

Research article
Part of the following topical collections:
  1. Soft-Matter Physics and Complex Systems

Abstract

Many practical systems in natural and social sciences can be described by dynamical networks. Day by day we have measured and accumulated huge amounts of data from these networks, which can be used by us to further our understanding of the world. The structures of the networks producing these data are often unknown. Consequently, understanding the structures of these networks from available data turns to be one of the central issues in interdisciplinary fields, which is called the network reconstruction problem. In this paper, we considered problems of network reconstructions using partially available data and some situations where data availabilities are not sufficient for conventional network reconstructions. Furthermore, we proposed to infer subnetwork with data of the subnetwork available only and other nodes of the entire network hidden; to depict group-group interactions in networks with averages of groups of node variables available; and to perform network reconstructions with known data of node variables only when networks are driven by both unknown internal fast-varying noises and unknown external slowly-varying signals. All these situations are expected to be common in practical systems and the methods and results may be useful for real world applications.

Keywords

network reconstruction dynamics data analysis 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant No. 11605098, China Postdoctoral Science Foundation under Grant No. 2015M581905, and K. C. Wong Magna Fund in Ningbo University.

References

  1. 1.
    D. J. Watts and S. H. Strogatz, Collective dynamics of small-world networks, Nature 393(6684), 440 (1998)ADSCrossRefGoogle Scholar
  2. 2.
    A. L. Barabási and R. Albert, Emergence of scaling in random networks, Science 286(5439), 509 (1999)ADSMathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    A. L. Barabási and Z. N. Oltvai, Network biology: Understanding the cell’s functional organization, Nat. Rev. Genet. 5(2), 101 (2004)CrossRefGoogle Scholar
  4. 4.
    A. M. Feist, M. J. Herrgard, I. Thiele, J. L. Reed, and B. O. Palsson, Reconstruction of biochemical networks in microorganisms, Nat. Rev. Microbiol. 7(2), 129 (2008)CrossRefGoogle Scholar
  5. 5.
    R. De Smet and K. Marchal, Advantages and limitations of current network inference methods, Nat. Rev. Microbiol. 8, 717 (2010)Google Scholar
  6. 6.
    M. K. S. Yeung, J. Tegner, and J. J. Collins, Reverse engineering gene networks using singular value decomposition and robust regression, Proc. Natl. Acad. Sci. USA 99(9), 6163 (2002)ADSCrossRefGoogle Scholar
  7. 7.
    J. M. Stuart, E. Segal, D. Koller, and S. K. Kim,, A genecoexpression network for global discovery of conserved genetic modules, Science 302(5643), 249 (2003)ADSCrossRefGoogle Scholar
  8. 8.
    E. Segal, M. Shapira, A. Regev, D. Pe’er, D. Botstein, D. Koller, and N. Friedman, Module networks: Identifying regulatory modules and their condition-specific regulators from gene expression data, Nat. Genet. 34(2), 166 (2003)CrossRefGoogle Scholar
  9. 9.
    Z. Hu, P. J. Killion, and V. R. Iyer, Genetic reconstruction of a functional transcriptional regulatory network, Nat. Genet. 39(5), 683 (2007)CrossRefGoogle Scholar
  10. 10.
    T. R. Lezon, J. R. Banavar, M. Cieplak, A. Maritan, and N. V. Fedoroff, Using the principle of entropy maximization to infer genetic interaction networks from gene expression patterns, Proc. Natl. Acad. Sci. USA 103(50), 19033 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    B. Barzel and A. L. Barabasi, Network link prediction by global silencing of indirect correlations, Nat. Biotechnol. 31(8), 720 (2013)CrossRefGoogle Scholar
  12. 12.
    S. Feizi, D. Marbach, M. Medard, and M. Kellis, Network deconvolution as a general method to distinguish direct dependencies in networks, Nat. Biotechnol. 31(8), 726 (2013)CrossRefGoogle Scholar
  13. 13.
    K. Basso, A. A. Margolin, G. Stolovitzky, U. Klein, R. Dalla-Favera, and A. Califano, Reverse engineering of regulatory networks in human b cells, Nat. Genet. 37(4), 382 (2005)CrossRefGoogle Scholar
  14. 14.
    M. Bansal, V. Belcastro, A. Ambesi-Impiombato, and D. di Bernardo, How to infer gene networks from expression profiles, Mol. Syst. Biol. 3, 78 (2007)CrossRefGoogle Scholar
  15. 15.
    D. Marbach, J. C. Costello, R. Kuffner, N. M. Vega, R. J. Prill, et al., Wisdom of crowds for robust gene network inference, Nat. Methods 9(8), 796 (2012)CrossRefGoogle Scholar
  16. 16.
    A. F. Villaverde, J. Ross, and J. R. Banga, Reverse engineering cellular networks with information theoretic methods, Cells 2(2), 306 (2013)CrossRefGoogle Scholar
  17. 17.
    R. Jansen, H. Yu, D. Greenbaum, Y. Kluger, N. J. Krogan, et al., A bayesian networks approach for predicting protein-protein interactions from genomic data, Science 302(5644), 449 (2003)ADSCrossRefGoogle Scholar
  18. 18.
    N. Friedman, Inferring cellular networks using probabilistic graphical models, Science 303(5659), 799 (2004)ADSCrossRefGoogle Scholar
  19. 19.
    A. C. Haury, F. Mordelet, P. Vera-Licona, and J. P. Vert, Tigress: Trustful inference of gene regulation using stability selection, BMC Syst. Biol. 6(1), 145 (2012)Google Scholar
  20. 20.
    T. S. Gardner, D. di Bernardo, D. Lorenz, and J. J. Collins, Inferring genetic networks and identifying compound mode of action via expression profiling, Science 301(5629), 102 (2003)ADSCrossRefGoogle Scholar
  21. 21.
    M. W. Covert, E. M. Knight, J. L. Reed, M. J. Herrgard, and B. O. Palsson, Integrating highthroughput and computational data elucidates bacterial networks, Nature 429(6987), 92 (2004)ADSCrossRefGoogle Scholar
  22. 22.
    M. B. Eisen, P. T. Spellman, P. O. Brown, and D. Botstein, Cluster analysis and display of genomewide expression patterns, Proc. Natl. Acad. Sci. USA 95(25), 14863 (1998)ADSCrossRefGoogle Scholar
  23. 23.
    Z. Zhang, Z. Zheng, H. Niu, Y. Mi, S. Wu, and G. Hu, Solving the inverse problem of noise-driven dynamic networks, Phys. Rev. E 91(1), 012814 (2015)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    Y. Chen, S. Wang, Z. Zheng, Z. Zhang, and G. Hu, Depicting network structures from variable data produced by unknown colored-noise driven dynamics, Europhys. Lett. 113(1), 18005 (2016)ADSCrossRefGoogle Scholar
  25. 25.
    Y. Chen, Z. Zhang, T. Chen, S. Wang, and G. Hu, Depict noise-driven nonlinear dynamic networks from output data by using high-order correlations, arXiv: 1605.05513Google Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of PhysicsNingbo UniversityNingboChina
  2. 2.School of SciencesBeijing University of Posts and TelecommunicationsBeijingChina
  3. 3.Department of PhysicsBeijing Normal UniversityBeijingChina

Personalised recommendations