Advertisement

Frontiers of Physics

, 12:127209 | Cite as

Two-carrier transport in SrMnBi2 thin films

Open Access
Research article
  • 368 Downloads
Part of the following topical collections:
  1. Recent Progress on Weyl Semimetals

Abstract

Monocrystalline SrMnBi2 thin films were grown by molecular beam epitaxy (MBE), and their transport properties were investigated. A high and unsaturated linear magnetoresistance (MR) was observed, which exhibited a transition from a semi-classical weak-field B 2 dependence to a high-field linear dependence. An unusual nonlinear Hall resistance was also observed because of the anisotropic Dirac fermions. The two-carrier model was adopted to analyze the unusual Hall resistance quantitatively. The fitting results yielded carrier densities and mobilities of 3:75 × 1014 cm-2 and 850 cm2·V-1·s-1, respectively, for holes, and 1.468 × 1013 cm2, 4118 cm2×V-1·s-1, respectively, for electrons, with a hole-dominant conduction at 2.5 K. Hence, an effective mobility can be achieved, which is in reasonable agreement with the effective hole mobility of 1800 cm2×V-1×s-1, extracted from the MR. Further, the angle-dependent MR, proportional to cos θ, where θ is the angle between the external magnetic field and the perpendicular orientation of the sample plane, also implies a high anisotropy of the Fermi surface. Our results about SrMnBi2 thin films, as one of a new class of AEMnBi2 and AEMnSb2 (AE = Ca, Sr, Ba, Yb, Eu) materials, suggest that they have a lot of exotic transport properties to be investigated, and that their high mobility might facilitate electronic device applications.

Keywords

SrMnBi2 thin films magnetoresistance two carriers anisotropic Dirac fermions 

References

  1. 1.
    K. Ziegler, Robust transport properties in graphene, Phys. Rev. Lett. 97(26), 266802 (2006)ADSCrossRefGoogle Scholar
  2. 2.
    A. K. Geim and K. S. Novoselov, The rise of graphene, Nat. Mater. 6, 183 (2007)ADSCrossRefGoogle Scholar
  3. 3.
    B. A. Bernevig, T. L. Hughes, and S. C. Zhang, Quantum spin Hall effect and topological phase transition in HgTe quantum wells, Science 314(5806), 1757 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    J. Moore, Topological insulators: The next generation, Nat. Phys. 5(6), 378 (2009)CrossRefGoogle Scholar
  5. 5.
    T. Liang, Q. Gibson, M. N. Ali, M. Liu, R. J. Cava, and N. P. Ong, Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2, Nat. Mater. 14(3), 280 (2015)ADSCrossRefGoogle Scholar
  6. 6.
    M. Z. Hasan and C. L. Kane, Topological insulators, Rev. Mod. Phys. 82(4), 3045 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    K. S. Novoselov, S. V. Morozov, T. M. G. Mohinddin, L. A. Ponomarenko, D. C. Elias, R. Yang, I. I. Barbolina, P. Blake, T. J. Booth, D. Jiang, J. Giesbers, E. W. Hill, and A. K. Geim, Electronic properties of graphene, physica status solidi(b), 244(11), 4106 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    A. Narayanan, M. D. Watson, S. F. Blake, N. Bruyant, L. Drigo, Y. L. Chen, D. Prabhakaran, B. Yan, C. Felser, T. Kong, P. C. Canfield, and A. I. Coldea, Linear magnetoresistance caused by mobility fluctuations in n-doped Cd3As2, Phys. Rev. Lett. 114(11), 117201 (2015)ADSCrossRefGoogle Scholar
  9. 9.
    A. A. Abrikosov, Quantum magnetoresistance, Phys. Rev. B 58(5), 2788 (1998)ADSCrossRefGoogle Scholar
  10. 10.
    D. K. S. Bertolazzi and A. Kis, Nonvolatile memory cells based on MoS2-graphene heterostructures, ACS Nano 7(4), 7 (2013)CrossRefGoogle Scholar
  11. 11.
    S. J. Han, A. V. Garcia, S. Oida, K. A. Jenkins, and W. Haensch, Graphene radio frequency receiver integrated circuit, Nat. Commun. 5, 3086 (2014)Google Scholar
  12. 12.
    L. Yu, Y. H. Lee, X. Ling, E. J. Santos, Y. C. Shin, Y. Lin, M. Dubey, E. Kaxiras, J. Kong, H. Wang, and T. Palacios, Graphene/MoS2 hybrid technology for large-scale two-dimensional electronics, Nano Lett. 14(6), 3055 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    J. B. He, D. M. Wang, and G. F. Chen, Giant magnetoresistance in layered manganese pnictide CaMnBi2, Appl. Phys. Lett. 100(11), 112405 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    Y. F. Guo, A. J. Princep, X. Zhang, P. Manuel, D. Khalyavin, I. I. Mazin, Y. G. Shi, and A. T. Boothroyd, Coupling of magnetic order to planar Bi electrons in the anisotropic Dirac metals AMnBi2 (A = Sr, Ca), Phys. Rev. B 90, 075120 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    M. A. Farhan, G. Lee, and J. H. Shim, AEMnSb2 (AE = Sr, Ba): A new class of Dirac materials, J. Phys.: Condens. Matter 26(4), 042201 (2014)Google Scholar
  16. 16.
    K. Wang, L. Wang, and C. Petrovic, Large magnetothermopower effect in Dirac materials (Sr/Ca)MnBi2, Appl. Phys. Lett. 100(11), 112111 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    H. Masuda, H. Sakai, M. Tokunaga, Y. Yamasaki, A. Miyake, J. Shiogai, S. Nakamura, S. Awaji, A. Tsukazaki, H. Nakao, Y. Murakami, T. Arima, Y. Tokura, and S. Ishiwata, Quantum Hall effect in a bulk antiferromagnet EuMnBi2 with magnetically confined 2d Dirac fermions, Sci. Adv. 2(1), e1501117 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    K. F. Wang, D. Graf, H. C. Lei, S. W. Tozer, and C. Petrovic, Quantum transport of two-dimensional Dirac fermions in SrMnBi2, Phys. Rev. B 84, 220401(R)Google Scholar
  19. 19.
    J. Park, G. Lee, F. Wolff-Fabris, Y. Y. Koh, M. J. Eom, Y. K. Kim, M. A. Farhan, Y. J. Jo, C. Kim, J. H. Shim, and J. S. Kim, Anisotropic Dirac fermions in a Bi square net of SrMnBi2, Phys. Rev. Lett. 107(12), 126402 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    J. Park, G. Lee, F. Wolff-Fabris, Y. Y. Koh, M. J. Eom, Y. K. Kim, M. A. Farhan, Y. J. Jo, C. Kim, J. H. Shim, and J. S. Kim, Anisotropic Dirac fermions in a Bi square net of SrMnBi2, Phys. Rev. Lett. 107, 126402Google Scholar
  21. 21.
    A. Kobayashi, S. Katayama, Y. Suzumura, and H. Fukuyama, Massless fermions in organic conductor, J. Phys. Soc. Jpn. 76(3), 034711 (2007)ADSCrossRefGoogle Scholar
  22. 22.
    H.-H. Kuo, J.-H. Chu, S. C. Riggs, L. Yu, P. L. McMahon, K. De Greve, Y. Yamamoto, J. G. Analytis, and I. R. Fisher, Possible origin of the nonmonotonic doping dependence of the in-plane resistivity anisotropy of Ba(Fe1-xTx)2As2 (T = Co, Ni, and Cu), Phys. Rev. B 84, 054540Google Scholar
  23. 23.
    K. K. Huynh, Y. Tanabe, and K. Tanigaki, Both electron and hole Dirac cone states in Ba(FeAs)2 confirmed by magnetoresistance, Phys. Rev. Lett. 106(21), 217004 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    L. Kouwenhoven and L. Glazman, Revival of the Kondo effect, Phys. World 14(1), 33 (2001)CrossRefGoogle Scholar
  25. 25.
    S. Ishiwata, Y. Shiomi, J. S. Lee, M. S. Bahramy, T. Suzuki, M. Uchida, R. Arita, Y. Taguchi, and Y. Tokura, Extremely high electron mobility in a phononglass semimetal, Nat. Mater. 12(6), 512 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    A. Husmann, J. B. Betts, G. S. Boebinger, A. Migliori, T. F. Rosenbaum, and M. L. Saboung, Megagauss sensors, Nature 417, 421 (2002)ADSCrossRefGoogle Scholar
  27. 27.
    J. Xiong, S. K. Kushwaha, Tian Liang, J. W. Krizan, M. Hirschberger, Wudi Wang, R. J. Cava, and N. P. Ong, Evidence for the chiral anomaly in the Dirac semimetal Na3Bi, Science 350(6259), 413 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    J. Park, G. Lee, F. Wolff-Fabris, Y. Y. Koh, M. J. Eom, Y. K. Kim, M. A. Farhan, Y. J. Jo, C. Kim, J. H. Shim, and J. S. Kim, Anisotropic Dirac fermions in a Bi square net of SrMnBi2, Phys. Rev. Lett. 107, 126402 (2011)ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Authors and Affiliations

  • Xiao Yan
    • 1
  • Cheng Zhang
    • 2
    • 3
  • Shan-Shan Liu
    • 2
    • 3
  • Yan-Wen Liu
    • 2
    • 3
  • David Wei Zhang
    • 1
  • Fa-Xian Xiu
    • 2
    • 3
  • Peng Zhou
    • 1
  1. 1.State Key Laboratory of ASIC and System, School of MicroelectronicsFudan UniversityShanghaiChina
  2. 2.State Key Laboratory of Surface Physics and Department of PhysicsFudan UniversityShanghaiChina
  3. 3.Collaborative Innovation Center of Advanced MicrostructuresNanjingChina

Personalised recommendations