Frontiers of Physics

, 12:128904 | Cite as

Diversity of chimera-like patterns from a model of 2D arrays of neurons with nonlocal coupling

  • Chang-Hai Tian
  • Xi-Yun Zhang
  • Zhen-Hua Wang
  • Zong-Hua Liu
Research Article
Part of the following topical collections:
  1. Soft-Matter Physics and Complex Systems

Abstract

Chimera states have been studied in 1D arrays, and a variety of different chimera states have been found using different models. Research has recently been extended to 2D arrays but only to phase models of them. Here, we extend it to a nonphase model of 2D arrays of neurons and focus on the influence of nonlocal coupling. Using extensive numerical simulations, we find, surprisingly, that this system can show most types of previously observed chimera states, in contrast to previous models, where only one or a few types of chimera states can be observed in each model. We also find that this model can show some special chimera-like patterns such as gridding and multicolumn patterns, which were previously observed only in phase models. Further, we present an effective approach, i.e., removing some of the coupling links, to generate heterogeneous coupling, which results in diverse chimera-like patterns and even induces transformations from one chimera-like pattern to another.

Keywords

chimera state FitzHugh–Nagumo model heterogeneous couplings 

Notes

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China under Grant Nos. 11135001 and 11375066, the National Basic Research Program of China (973 Program) under Grant No. 2013CB834100, the Scientific Research Starting Foundation of Tongren University under Grant No. TS1118, and the Natural Science Foundation of Guizhou Province Education Department under Grant No. KY[2014]316.

References and notes

  1. 1.
    Y. Kuramoto and D. Battogtokh, Coexistence of coherence and incoherence in nonlocally coupled phase oscillators, Nonlinear Phenom. Complex Syst. 5, 380 (2002)Google Scholar
  2. 2.
    D. M. Abrams and S. H. Strogatz, Chimera states for coupled oscillators, Phys. Rev. Lett. 93(17), 174102 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    I. Omelchenko, O. E. Omel’chenko, P. Hövel, and E. Schöll, When nonlocal coupling between oscillators becomes stronger: Patched synchrony or multichimera states, Phys. Rev. Lett. 110(22), 224101 (2013)Google Scholar
  4. 4.
    J. Hizanidis, V. G. Kanas, A. Bezerianos, and T. Bountis, Chimera states in networks of nonlocally coupled HindmarshRose neuron models, Inter. J. Bif. Chaos 24(03), 1450030 (2014)CrossRefMATHGoogle Scholar
  5. 5.
    H. Sakaguchi, Instability of synchronized motion in nonlocally coupled neural oscillators, Phys. Rev. E 73(3), 031907 (2006)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    S. Olmi, A. Politi, and A. Torcini, Collective chaos in pulsecoupled neural networks, Europhys. Lett. 92(6), 60007 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    I. Omelchenko, Y. Maistrenko, P. Hövel, and E. Schöll, Loss of coherence in dynamical networks: Spatial chaos and chimera states, Phys. Rev. Lett. 106(23), 234102 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    I. Omelchenko, B. Riemenschneider, P. Hövel, Y. Maistrenko, and E. Schöll, Transition from spatial coherence to incoherence in coupled chaotic systems, Phys. Rev. E 85(2), 026212 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    O. E. Omel’chenko, M. Wolfrum, S. Yanchuk, Y. L. Maistrenko, and O. Sudakov, Stationary patterns of coherence and incoherence in two-dimensional arrays of non-locally-coupled phase oscillators, Phys. Rev. E 85(3), 036210 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    M. J. Panaggio and D. M. Abrams, Chimera states on a flat torus, Phys. Rev. Lett. 110(9), 094102 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    M. J. Panaggio and D. M. Abrams, Chimera states on the surface of a sphere, Phys. Rev. E 91(2), 022909 (2015)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    J. Xie, E. Knobloch, and H. C. Kao, Twisted chimera states and multicore spiral chimera states on a twodimensional torus, Phys. Rev. E 92(4), 042921 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    Y. Maistrenko, O. Sudakov, O. Osiv, and V. Maistrenko, Chimera states in three dimensions, New J. Phys. 17(7), 073037 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    A. M. Hagerstrom, T. E. Murphy, R. Roy, P. Hövel, I. Omelchenko, and E. Schöll, Experimental observation of chimeras in coupled-map lattices, Nat. Phys. 8(9), 658 (2012)CrossRefGoogle Scholar
  15. 15.
    M. R. Tinsley, S. Nkomo, and K. Showalter, Chimera and phasecluster states in populations of coupled chemical oscillators, Nat. Phys. 8(9), 662 (2012)CrossRefGoogle Scholar
  16. 16.
    E. A. Viktorov, T. Habruseva, S. P. Hegarty, G. Huyet, and B. Kelleher, Coherence and incoherence in an optical comb, Phys. Rev. Lett. 112(22), 224101 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    N. Yao, Z. G. Huang, C. Grebogi, and Y. C. Lai, Emergence of multicluster chimera states, Sci. Rep. 5, 12988 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    D. M. Abrams, R. Mirollo, S. H. Strogatz, and D. A. Wiley, Solvable model for chimera states of coupled oscillators, Phys. Rev. Lett. 101(8), 084103 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    R. Ma, J. Wang, and Z. Liu, Robust features of chimera states and the implementation of alternating chimera states, Europhys. Lett. 91(4), 40006 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    E. A. Martens, C. R. Laing, and S. H. Strogatz, Solvable model of spiral wave chimeras, Phys. Rev. Lett. 104(4), 044101 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    C. Gu, G. St-Yves, and J. Davidsen, Spiral wave chimeras in complex oscillatory and chaotic systems, Phys. Rev. Lett. 111(13), 134101 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    C. R. Laing, The dynamics of chimera states in heterogeneous Kuramoto networks, Physica D 238(16), 1569 (2009)ADSMathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    J. Xie, E. Knobloch, and H. C. Kao, Multicluster and traveling chimera states in nonlocal phase-coupled oscillators, Phys. Rev. E 90(2), 022919 (2014)ADSCrossRefGoogle Scholar
  24. 24.
    A. Zakharova, M. Kapeller, and E. Scholl, Chimera death: Symetry breaking in dynamical networks, Phys. Rev. Lett. 112(15), 154101 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    P. S. Dutta and T. Banerjee, Spatial coexistence of synchronized oscillation and death: A chimeralike state, Phys. Rev. E 92(4), 042919 (2015)ADSCrossRefGoogle Scholar
  26. 26.
    T. Banerjee, Mean-field-diffusioninduced chimera death state, Europhys. Lett. 110(6), 60003 (2015)ADSCrossRefGoogle Scholar
  27. 27.
    M. J. Panaggio and D. M. Abrams, Chimera states: Coexistence of coherence and incoherence in networks of coupled oscillators, Nonlinearity 28(3), R67 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    N. C. Rattenborg, C. J. Amlaner, and S. L. Lima, Behavioral, neurophysiological and evolutionary perspectives on unihemispheric sleep, Neurosci. Biobehav. Rev. 24(8), 817 (2000)CrossRefGoogle Scholar
  29. 29.
    E. M. Cherry and F. H. Fenton, Visualization of spiral and scroll waves in simulated and experimental cardiac tissue, New J. Phys. 10(12), 125016 (2008)ADSCrossRefGoogle Scholar
  30. 30.
    A. Rothkegel and K. Lehnertz, Irregular macroscopic dynamics due to chimera states in small-world networks of pulse-coupled oscillators, New J. Phys. 16(5), 055006 (2014)ADSCrossRefGoogle Scholar
  31. 31.
    W. Singer, Neuronal synchrony: A versatile code for the definition of relations? Neuron 24(1), 49 (1999)CrossRefGoogle Scholar
  32. 32.
    J. F. Hipp, A. K. Engel, and M. Siegel, Oscillatory synchronization in large-scale cortical networks predicts perception, Neuron 69(2), 387 (2011)CrossRefGoogle Scholar
  33. 33.
    P. R. Roelfsema, A. Engel, P. König, and W. Singer, Visuomotor integration is associated with zero time-lag synchronization among cortical areas, Nature 385(6612), 157 (1997)ADSCrossRefGoogle Scholar
  34. 34.
    T. P. Vogels and L. F. Abbott, Signal propagation and logic gating in networks of integrate-and-fire neurons, J. Neurosci. 25(46), 10786 (2005)CrossRefGoogle Scholar
  35. 35.
    A. Aertsen, M. Diesmann, and M.O. Gewaltig, Stable propagation of synchronous spiking in cortical neural networks, Nature 402(6761), 529 (1999)ADSCrossRefGoogle Scholar
  36. 36.
    T. Womelsdorf, J. M. Schoffelen, R. Oostenveld, W. Singer, R. Desimone, A. K. Engel, and P. Fries, Modulation of neuronal interactions through neuronal synchronization, Science 316(5831), 1609 (2007)Google Scholar
  37. 37.
    K. Xu, W. Huang, B. Li, M. Dhamala, and Z. Liu, Controlling self-sustained spiking activity by adding or removing one network link, Europhys. Lett. 102(5), 50002 (2013)ADSCrossRefGoogle Scholar
  38. 38.
    Z. Liu, Organization network enhanced detection and transmission of phase-locking, Europhys. Lett. 100(6), 60002 (2012)ADSCrossRefGoogle Scholar
  39. 39.
    J. Wang and Z. Liu, A chain model for signal detection and transmission, Europhys. Lett. 102(1), 10003 (2013)ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    K. Xu, X. Zhang, C. Wang, and Z. Liu, A simplified memory network model based on pattern formations, Sci. Rep. 4, 7568 (2014)ADSCrossRefGoogle Scholar
  41. 41.
    J. Hopfield, Neural networks and physical systems with emergent collective computational abilities, Proc. Natl. Acad. Sci. USA 79(8), 2554 (1982)ADSMathSciNetCrossRefGoogle Scholar
  42. 42.
    P. C. Matthews, R. E. Mirollo, and S. H. Strogatz, Dynamics of a large system of coupled nonlinear oscillators, Physica D 52(2–3), 293 (1991)ADSMathSciNetCrossRefMATHGoogle Scholar
  43. 43.
    M. C. Cross, J. L. Rogers, R. Lifshitz, and A. Zumdieck, Synchronization by reactive coupling and nonlinear frequency pulling, Phys. Rev. E 73(3), 036205 (2006)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Chang-Hai Tian
    • 1
    • 2
  • Xi-Yun Zhang
    • 1
  • Zhen-Hua Wang
    • 1
  • Zong-Hua Liu
    • 1
  1. 1.Department of PhysicsEast China Normal UniversityShanghaiChina
  2. 2.School of Data ScienceTongren UniversityTongrenChina

Personalised recommendations