Advertisement

Frontiers of Physics

, 12:128301 | Cite as

Translocation time of a polymer chain through an energy gradient nanopore

Research article
  • 79 Downloads
Part of the following topical collections:
  1. Soft-Matter Physics and Complex Systems

Abstract

The translocation time of a polymer chain through an interaction energy gradient nanopore was studied by Monte Carlo simulations and the Fokker–Planck equation with double-absorbing boundary conditions. Both the simulation and calculation revealed three different behaviors for polymer translocation. These behaviors can be explained qualitatively from free-energy landscapes obtained for polymer translocation at different parameters. Results show that the translocation time of a polymer chain through a nanopore can be tuned by suitably designing the interaction energy gradient.

Keywords

polymer chain translocation time nanopore Monte Carlo simulation Fokker–Planck equation 

PACS numbers

83.80.Sg 87.15.A- 87.15.H- 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11674277 and 11374255) and the Zhejiang Provincial Natural Science Foundation (Grant No. LQ14A040004).

References

  1. 1.
    S. M. Simon and G. Blobel, A protein-conducting channel in the endoplasmic reticulum, Cell 65(3), 371 (1991)CrossRefGoogle Scholar
  2. 2.
    J. Helenius, D. T. W. Ng, C. L. Marolda, P. Walter, M. A. Valvano, and M. Aebi, Translocation of lipid-linked oligosaccharides across the ER membrane requires Rft1 protein, Nature 415(6870), 447 (2002)ADSCrossRefGoogle Scholar
  3. 3.
    B. Alberts, D. Bray, J. Lewis, M. Raft, K. Roberts, and J. D. Watson, Molecular Biology of the Cell, New York: Garland Science, 1994Google Scholar
  4. 4.
    V. R. Lingappa, J. Chaidez, C. S. Yost, and J. Hedgpeth, Determinants for protein localization: Betalactamase signal sequence directs globin across microsomal membranes, Proc. Natl. Acad. Sci. USA 81(2), 456 (1984)ADSCrossRefGoogle Scholar
  5. 5.
    J. Han, S. W. Turner, and H. G. Craighead, Entropic trapping and escape of long DNA molecules at submicron size constriction, Phys. Rev. Lett. 83(8), 1688 (1999)ADSCrossRefGoogle Scholar
  6. 6.
    J. Han and H. G. Craighead, Separation of long DNA molecules in a microfabricated entropic trap array, Science 288(5468), 1026 (2000)ADSCrossRefGoogle Scholar
  7. 7.
    B. H. Zimm and S. D. Levene, Problems and prospects in the theory of gel electrophoresis of DNA, Q. Rev. Biophys. 25(02), 171 (1992)CrossRefGoogle Scholar
  8. 8.
    J. J. Kasianowicz, E. Brandin, D. Branton, and D. W. Deamer, Characterization of individual polynucleotide molecules using a membrane channel, Proc. Natl. Acad. Sci. USA 93(24), 13770 (1996)ADSCrossRefGoogle Scholar
  9. 9.
    A. Meller, L. Nivon, and D. Branton, Voltage-driven DNA translocations through a nanopore, Phys. Rev. Lett. 86(15), 3435 (2001)ADSCrossRefGoogle Scholar
  10. 10.
    A. J. Storm, C. Storm, J. Chen, H. Zandbergen, J. F. Joanny, and C. Dekker, Fast DNA translocation through a solid-state nanopore, Nano Lett. 5(7), 1193 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    S. W. Kowalczyk, A. R. Hall, and C. Dekker, Detection of local protein structures along DNA using solid-state nanopores, Nano Lett. 10(1), 324 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    A. Aksimentiev, Deciphering ionic current signatures of DNA transport through a nanopore, Nanoscale 2(4), 468 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    C. T. Wong and M. Muthukumar, Polymer translocation through alpha-hemolysin pore with tunable polymer-pore electrostatic interaction, J. Chem. Phys. 133(4), 045101 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    B. M. Venkatesan and R. Bashir, Nanopore sensors for nucleic acid analysis, Nat. Nanotechnol. 6(10), 615 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    D. Panja, G. T. Barkema, and A. B. Kolomeisky, Through the eye of the needle: Recent advances in understanding biopolymer translocation, J. Phys.: Condens. Matter 25(41), 413101 (2013)Google Scholar
  16. 16.
    A. Biesemans, M. Soskine, and G. Maglia, A protein rotaxane controls the translocation of proteins across a ClyA nanopore, Nano Lett. 15(9), 6076 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    J. Mathe, A. Aksimentiev, D. R. Nelson, K. Schulten, and A. Meller, Orientation discrimination of singlestranded DNA inside the a-hemolysin membrane channel, Proc. Natl. Acad. Sci. USA 102(35), 12377 (2005)ADSCrossRefGoogle Scholar
  18. 18.
    I. M. Derrington, T. Z. Butler, M. D. Collins, E. Manrao, M. Pavlenok, M. Niederweis, and J. H. Gundlach, Nanopore DNA sequencing with MspA, Proc. Natl. Acad. Sci. USA 107(37), 16060 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    L. Liu, C. Yang, K. Zhao, J. Y. Li, and H. C. Wu, Ultrashort single-walled carbon nanotubes in a lipid bilayer as a new nanopore sensor, Nat. Commun. 4, 2989 (2013)ADSGoogle Scholar
  20. 20.
    D. Rodriguez-Larrea and H. Bayley, Multistep protein unfolding during nanopore translocation, Nat. Nanotechnol. 8(4), 288 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    J. Wilson, L. Sloman, Z. He, and A. Aksimentiev, Graphene nanopores for protein sequencing, Adv. Funct. Mater. 26(27), 4830 (2016)CrossRefGoogle Scholar
  22. 22.
    W. Sung and P. J. Park, Polymer translocation through a pore in a membrane, Phys. Rev. Lett. 77(4), 783 (1996)ADSCrossRefGoogle Scholar
  23. 23.
    M. Muthukumar, Polymer translocation through a hole, J. Chem. Phys. 111(22), 10371 (1999)ADSCrossRefGoogle Scholar
  24. 24.
    M. Muthukumar, Polymer escape through a nanopore, J. Chem. Phys. 118(11), 5174 (2003)ADSCrossRefGoogle Scholar
  25. 25.
    A. Gopinathan and Y. W. Kim, Polymer translocation in crowded environments, Phys. Rev. Lett. 99(22), 228106 (2007)ADSCrossRefGoogle Scholar
  26. 26.
    J. L. A. Dubbeldam, V. G. Rostiashvili, A. Milchev, and T. A. Vilgis, Forced translocation of a polymer: Dynamical scaling versus molecular dynamics simulation, Phys. Rev. E 85(4), 041801 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    J. M. Polson and A. C. M. McCaffrey, Polymer translocation dynamics in the quasi-static limit, J. Chem. Phys. 138(17), 174902 (2013)ADSCrossRefGoogle Scholar
  28. 28.
    J. Chuang, Y. Kantor, and M. Kardar, Anomalous dynamics of translocation, Phys. Rev. E 65(1), 011802 (2001)ADSCrossRefGoogle Scholar
  29. 29.
    A. Milchev, K. Binder, and A. Bhattacharya, Polymer translocation through a nanopore induced by adsorption: Monte Carlo simulation of a coarse-grained model, J. Chem. Phys. 121(12), 6042 (2004)ADSCrossRefGoogle Scholar
  30. 30.
    K. Luo, T. Ala-Nissila, S. C. Ying, and A. Bhattacharya, Influence of polymer-pore interactions on translocation, Phys. Rev. Lett. 99(14), 148102 (2007)ADSCrossRefGoogle Scholar
  31. 31.
    M. B. Luo, Translocation of polymer chains through interacting nanopores, Polymer 48(26), 7679 (2007)CrossRefGoogle Scholar
  32. 32.
    A. Milchev, L. Klushin, A. Skvortsov, and K. Binder, Ejection of a polymer chain from a nanopore: Theory and computer experiment, Macromolecules 43(16), 6877 (2010)ADSCrossRefGoogle Scholar
  33. 33.
    M. B. Luo and W. P. Cao, Influence of polymer-pore interaction on the translocation of a polymer through a nanopore, Phys. Rev. E 86(3), 031914 (2012)ADSCrossRefGoogle Scholar
  34. 34.
    C. J. Rasmussen, A. Vishnyakov, and A. V. Neimark, Translocation dynamics of freely jointed Lennard–Jones chains into adsorbing pores, J. Chem. Phys. 137(14), 144903 (2012)ADSCrossRefGoogle Scholar
  35. 35.
    H. de Haan and G. Slater, Translocation of “rod-coil” polymers: Probing the structure of single molecules within nanopores, Phys. Rev. Lett. 110(4), 048101 (2013)ADSCrossRefGoogle Scholar
  36. 36.
    S. Markosyan, P. M. De Biase, L. Czapla, O. Samoylova, G. Singh, J. Cuervo, D. P. Tieleman, and S. Y. Noskov, Effect of confinement on DNA, solvent and counterion dynamics in a model biological nanopore, Nanoscale 6(15), 9006 (2014)ADSCrossRefGoogle Scholar
  37. 37.
    C. Wang, Y. C. Chen, S. Zhang, and M. B. Luo, Translocation of diblock copolymer through compound channels: A Monte Carlo simulation study, Macromolecules 47(20), 7215 (2014)ADSCrossRefGoogle Scholar
  38. 38.
    A. Fiasconaro, J. J. Mazo, and F. Falo, Active polymer translocation in the three-dimensional domain, Phys. Rev. E 91(2), 022113 (2015)ADSCrossRefGoogle Scholar
  39. 39.
    R. Adhikari and A. Bhattacharya, Deconvoluting chain heterogeneity from driven translocation through a nanopore, EPL 109(3), 38001 (2015)ADSCrossRefGoogle Scholar
  40. 40.
    D. Mondal and M. Muthukumar, Ratchet rectification effect on the translocation of a flexible polyelectrolyte chain, J. Chem. Phys. 145(8), 084906 (2016)ADSCrossRefGoogle Scholar
  41. 41.
    L. Z. Sun, W. P. Cao, and M. B. Luo, Free energy landscape for the translocation of polymer through an interacting pore, J. Chem. Phys. 131(19), 194904 (2009)ADSCrossRefGoogle Scholar
  42. 42.
    Y. Liu and L. Yobas, Slowing DNA Translocation in a nanofluidic field-effect transistor, ACS Nano 10(4), 3985 (2016)CrossRefGoogle Scholar
  43. 43.
    S. Zhang, C. Wang, L. Z. Sun, C. Y. Li, and M. B. Luo, Polymer translocation through a gradient channel, J. Chem. Phys. 139(4), 044902 (2013)ADSCrossRefGoogle Scholar
  44. 44.
    G. Maglia, M. R. Restrepo, E. Mikhailova, and H. Bayley, Enhanced translocation of single DNA molecules through a-hemolysin nanopores by manipulation of internal charge, Proc. Natl. Acad. Sci. USA 105(50), 19720 (2008)ADSCrossRefGoogle Scholar
  45. 45.
    D. Wang, S. Harrer, B. Luan, G. Stolovitzky, H. Peng, and A. Afzali-Ardakani, Regulating the transport of DNA through biofriendly nanochannels in a thin solid membrane, Sci. Rep. 4, 3985 (2014)ADSCrossRefGoogle Scholar
  46. 46.
    Y. He, M. Tsutsui, M. Taniguchi, and T. Kawai, DNA capture in nanopores for genome sequencing: challenges and opportunities, J. Mater. Chem. 22(27), 13423 (2012)CrossRefGoogle Scholar
  47. 47.
    P. M. De Biase, E. N. Ervin, P. Pal, O. Samoylova, S. Markosyan, M. G. Keehan, G. A. Barrall, and S. Y. Noskov, What controls open-pore and residual currents in the first sensing zone of alpha-hemolysin nanopore? Combined experimental and theoretical study, Nanoscale 8(22), 11571 (2016)ADSCrossRefGoogle Scholar
  48. 48.
    S. G. Whittington, Self-avoiding walks terminally attached to an interface, J. Chem. Phys. 63(2), 779 (1975)ADSCrossRefGoogle Scholar
  49. 49.
    S. Mirigian, Y. Wang, and M. Muthukumar, Translocation of a heterogeneous polymer, J. Chem. Phys. 137(6), 064904 (2012)ADSCrossRefGoogle Scholar
  50. 50.
    K. Luo and R. Metzler, Polymer translocation into a fluidic channel through a nanopore, Phys. Rev. E 82(2), 021922 (2010)ADSCrossRefGoogle Scholar
  51. 51.
    C. Wang, Y. C. Chen, Y. L. Zhou, and M. B. Luo, Escape of polymer chains from an attractive channel under electrical force, J. Chem. Phys. 134(6), 064905 (2011)ADSCrossRefGoogle Scholar
  52. 52.
    M. B. Luo, Translocation of polymer through nanopore: Dissipative particle dynamics simulation, Chin. Sci. Bull. 59(35), 4960 (2014)CrossRefGoogle Scholar
  53. 53.
    E. Slonkina and A. B. Kolomeisky, Polymer translocation through a long nanopore, J. Chem. Phys. 118(15), 7112 (2003)ADSCrossRefGoogle Scholar
  54. 54.
    H. Li, C. J. Qian, C. Wang, and M. B. Luo, Critical adsorption of a flexible polymer confined between two parallel interacting surfaces, Phys. Rev. E 87(1), 012602 (2013)ADSCrossRefGoogle Scholar
  55. 55.
    M. B. Luo, Q. H. Yang, C. Y. Zhang, and F. Wu, Study on the diffusion of polymer in long cylindrical tubes, Polymer 101, 192 (2016)CrossRefGoogle Scholar
  56. 56.
    J. Clarke, H. C. Wu, L. Jayasinghe, A. Patel, S. Reid, and H. Bayley, Continuous base identification for singlemolecule nanopore DNA sequencing, Nat. Nanotechnol. 4(4), 265 (2009)ADSCrossRefGoogle Scholar
  57. 57.
    M. Muthukumar, Communication: Charge, diffusion, and mobility of proteins through nanopores, J. Chem. Phys. 141(8), 081104 (2014)ADSCrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Meng-Bo Luo
    • 1
  • Shuang Zhang
    • 1
    • 2
  • Fan Wu
    • 1
  • Li-Zhen Sun
    • 3
  1. 1.Department of PhysicsZhejiang UniversityHangzhouChina
  2. 2.College of ScienceQinzhou UniversityQinzhouChina
  3. 3.Department of Applied PhysicsZhejiang University of TechnologyHangzhouChina

Personalised recommendations