Frontiers of Physics

, 12:127501 | Cite as

Multiple conical spin order in spinel structure stabilized by magnetic anisotropy

  • Xiao-Yan Yao
  • Li-Juan Yang
Research Article


Conical spin order, where the spin components along the conical axis form magnetization while the spiral parts induce ferroelectric polarization, possesses multiferroicity with inherent magnetoelectric coupling. A Monte Carlo simulation performed using a classical Heisenberg spinel (AB2O4) model reveals a multiple conical spin order, i.e., three modulations with different cone angles and wavelengths on A sites and two alternate B sites. The spin order not only exists as the ground state but also survives locally stably in a larger parameter region. The whole existence range can be effectively expanded by anisotropy to cover the cases of CoCr2O4 and MnCr2O4. The multiple conical spin order is well maintained and finely tuned by frustration and anisotropy over the whole existence range, and the magnetic and ferroelectric properties are influenced correspondingly.


conical spin order multiferroicity spinel structure Monte Carlo simulation 



This work was supported by the research grants from the Natural Science Foundation of Jiangsu Province of China (Grant Nos. BK20141329 and 15KJB140009).


  1. 1.
    Y. Yamasaki, S. Miyasaka, Y. Kaneko, J. P. He, T. Arima, and Y. Tokura, Magnetic reversal of the ferroelectric polarization in a multiferroic spinel oxide, Phys. Rev. Lett. 96(20), 207204 (2006)ADSCrossRefGoogle Scholar
  2. 2.
    I. Kim, Y. S. Oh, Y. Liu, S. H. Chun, J. S. Lee, K. T. Ko, J. H. Park, J. H. Chung, and K. H. Kim, Electric polarization enhancement in multiferroic CoCr2O4 crystals with Cr-site mixing, Appl. Phys. Lett. 94(4), 042505 (2009)ADSCrossRefGoogle Scholar
  3. 3.
    Y. J. Choi, J. Okamoto, D. J. Huang, K. S. Chao, H. J. Lin, C. T. Chen, M. van Veenendaal, T. A. Kaplan, and S. W. Cheong, Thermally or magnetically induced polarization reversal in the multiferroic CoCr2O4, Phys. Rev. Lett. 102(6), 067601 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    I. Urcelay-Olabarria, E. Ressouche, A. A. Mukhin, V. Y. Ivanov, A. M. Balbashov, J. L. Garcia-Munoz, and V. Skumryev, Conical antiferromagnetic order in the ferroelectric phase of Mn0:8Co0:2WO4 resulting from the competition between collinear and cycloidal structures, Phys. Rev. B 85(22), 224419 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    N. Kida, D. Okuyama, S. Ishiwata, Y. Taguchi, R. Shimano, K. Iwasa, T. Arima, and Y. Tokura, Electricdipole- active magnetic resonance in the conical-spin magnet Ba2Mg2Fe12O22, Phys. Rev. B 80(22), 220406 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    S. Ishiwata, Y. Taguchi, Y. Tokunaga, H. Murakawa, Y. Onose, and Y. Tokura, Electric polarization induced by transverse magnetic field in the anisotropycontrolled conical helimagnet Ba2(Mg1-xZnx)2Fe12O22, Phys. Rev. B 79(18), 180408 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    H. B. Lee, S. H. Chun, K. W. Shin, B. G. Jeon, Y. S. Chai, K. H. Kim, J. Schefer, H. Chang, S. N. Yun, T. Y. Joung, and J. H. Chung, Heliconical magnetic order and field-induced multiferroicity of the Co2Y-type hexaferrite Ba0:3Sr1:7Co2Fe12O22, Phys. Rev. B 86(9), 094435 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    L. Lin, H. X. Zhu, X. M. Jiang, K. F. Wang, S. Dong, Z. B. Yan, Z. R. Yang, J. G. Wan, and J. M. Liu, Coupled ferroelectric polarization and magnetization in spinel FeCr2S4, Sci. Rep. 4, 6530 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    Y. Kitagawa, Y. Hiraoka, T. Honda, T. Ishikura, H. Nakamura, and T. Kimura, Low-field magnetoelectric effect at room temperature, Nat. Mater. 9(10), 797 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    Y. Tokunaga, Y. Kaneko, D. Okuyama, S. Ishiwata, T. Arima, S. Wakimoto, K. Kakurai, Y. Taguchi, and Y. Tokura, Multiferroic M-type hexaferrites with a roomtemperature conical state and magnetically controllable spin helicity, Phys. Rev. Lett. 105(25), 257201 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    M. Soda, T. Ishikura, H. Nakamura, Y. Wakabayashi, and T. Kimura, Magnetic ordering in relation to the room-temperature magnetoelectric effect of Sr3Co2Fe24O41, Phys. Rev. Lett. 106(8), 087201 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    S. Ishiwata, Y. Taguchi, H. Murakawa, Y. Onose, and Y. Tokura, Low-magnetic-field control of electric polarization vector in a helimagnet, Science 319(5870), 1643 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    H. Murakawa, Y. Onose, K. Ohgushi, S. Ishiwata, and Y. Tokura, Generation of electric polarization with rotating magnetic field in helimagnet ZnCr2Se4, J. Phys. Soc. Jpn. 77(4), 043709 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    H. Murakawa, Y. Onose, F. Kagawa, S. Ishiwata, Y. Kaneko, and Y. Tokura, Rotation of an electric polarization vector by rotating magnetic field in cycloidal magnet Eu0:55Y0:45MnO3, Phys. Rev. Lett. 101(19), 197207 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    X. Yao, V. C. Lo, and J. M. Liu, Magnetic field controlled reversal of ferroelectric polarization in conical spin ordered multiferroics: Monte Carlo simulation, J. Appl. Phys. 106(7), 073901 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    X. Yao, Continuous rotation of magnetization controlled by electric field in multiferroic state originated from conical spin order, J. Phys. Soc. Jpn. 79(4), 043801 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    T. A. Kaplan, K. Dwight, D. Lyons, and N. Menyuk, Classical theory of the ground spin state in spinels, J. Appl. Phys. 32(3), S13 (1961)ADSCrossRefMATHGoogle Scholar
  18. 18.
    D. H. Lyons, T. A. Kaplan, K. Dwight, and N. Menyuk, Classical theory of the ground spin-state in cubic spinels, Phys. Rev. 126(2), 540 (1962)ADSCrossRefMATHGoogle Scholar
  19. 19.
    J. M. Hastings and L. M. Corliss, Magnetic structure of manganese chromite, Phys. Rev. 126(2), 556 (1962)ADSCrossRefGoogle Scholar
  20. 20.
    N. Menyuk, K. Dwight, and A. Wold, Ferrimagnetic spiral configurations in cobalt chromite, J. Phys. (Paris) 25(5), 528 (1964)CrossRefGoogle Scholar
  21. 21.
    K. Tomiyasu, J. Fukunaga, and H. Suzuki, Magnetic short-range order and reentrant-spin-glass-like behavior in CoCr2O4 and MnCr2O4 by means of neutron scattering and magnetization measurements, Phys. Rev. B 70(21), 214434 (2004)ADSCrossRefGoogle Scholar
  22. 22.
    C. Ederer and M. Komelj, Magnetic coupling in CoCr2O4 and MnCr2O4: An LSDA + U study, Phys. Rev. B 76(6), 064409 (2007)ADSCrossRefGoogle Scholar
  23. 23.
    G. Lawes, B. Melot, K. Page, C. Ederer, M. A. Hayward, T. Proffen, and R. Seshadri, Dielectric anomalies and spiral magnetic order in CoCr2O4, Phys. Rev. B 74(2), 024413 (2006)ADSCrossRefGoogle Scholar
  24. 24.
    X. Yao, Stable and locally stable conditions for a conical spin state in the spinel structure, EPL 102(6), 67013 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    H. Katsura, N. Nagaosa, and A. V. Balatsky, Spin current and magnetoelectric effect in noncollinear magnets, Phys. Rev. Lett. 95(5), 057205 (2005)ADSCrossRefGoogle Scholar
  26. 26.
    I. A. Sergienko and E. Dagotto, Role of the Dzyaloshinskii–Moriya interaction in multiferroic perovskites, Phys. Rev. B 73(9), 094434 (2006)ADSCrossRefGoogle Scholar
  27. 27.
    H. Sagayama, K. Taniguchi, N. Abe, T. Arima, Y. Nishikawa, S. I. Yano, Y. Kousaka, J. Akimitsu, M. Matsuura, and K. Hirota, Two distinct ferroelectric phases in the multiferroic Y-type hexaferrite Ba2Mg2Fe12O22, Phys. Rev. B 80(18), 180419 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    S. P. Shen, Y. S. Chai, J. Z. Cong, P. J. Sun, J. Lu, L. Q. Yan, S. G. Wang, and Y. Sun, Magnetic-ion-induced displacive electric polarization in FeO5 bipyramidal units of (Ba, Sr)Fe12O19 hexaferrites, Phys. Rev. B 90(18), 180404(R) (2014)ADSCrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of PhysicsSoutheast UniversityNanjingChina
  2. 2.School of Information Science and TechnologySuqian CollegeSuqianChina

Personalised recommendations