Frontiers of Physics

, 12:127206 | Cite as

Graphene: Nanostructure engineering and applications

  • Tingting Zhang
  • Shuang Wu
  • Rong Yang
  • Guangyu Zhang
Open Access
Review article

Abstract

Graphene has attracted extensive research interest in recent years because of its fascinating physical properties and its potential for various applications. The band structure or electronic properties of graphene are very sensitive to its geometry, size, and edge structures, especially when the size of graphene is below the quantum confinement limit. Graphene nanoribbons (GNRs) can be used as a model system to investigate such structure-sensitive parameters. In this review, we examine the fabrication of GNRs via both top-down and bottom-up approaches. The edge-related electronic and transport properties of GNRs are also discussed.

Keywords

graphene nanoribbons (GNRs) microfabrication top-down bottom-up electronic transport zigzag mobility edge state 

PACS numbers

81.07.-b 73.22.Pr 72.80.Vp 72.20.Ee 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (NSFC, Grant Nos. 61325021, 11574361, and 61390503), the National Basic Research Program of China (973 Program, Grant Nos. 2013CB934500 and 2013CBA01602), and the Key Research Program of Frontier Sciences (Grant No. QYZDB-SSW-SLH004).

References

  1. 1.
    K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306 (5696), 666 (2004)ADSCrossRefGoogle Scholar
  2. 2.
    K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene, Nature 438 (7065), 197 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    M. I. Katsnelson, K. S. Novoselov, and A. K. Geim, Chiral tunnelling and the Klein paradox in graphene, Nat. Phys. 2(9), 620 (2006)CrossRefGoogle Scholar
  4. 4.
    J. Baringhaus, M. Ruan, F. Edler, A. Tejeda, M. Sicot, A. Taleb-Ibrahimi, A. P. Li, Z. Jiang, E. H. Conrad, C. Berger, C. Tegenkamp, and W. A. de Heer, Exceptional ballistic transport in epitaxial graphene nanoribbons, Nature 506 (7488), 349 (2014)ADSCrossRefGoogle Scholar
  5. 5.
    C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, Electronic confinement and coherence in patterned epitaxial graphene, Science 312 (5777), 1191 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    M. Orlita, C. Faugeras, P. Plochocka, P. Neugebauer, G. Martinez, D. K. Maude, A. L. Barra, M. Sprinkle, C. Berger, W. A. de Heer, and M. Potemski, Approaching the Dirac point in high-mobility multilayer epitaxial graphene, Phys. Rev. Lett. 101(26), 267601 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    M. Y. Han, B. Ozyilmaz, Y. Zhang, and P. Kim, Energy band-gap engineering of graphene nanoribbons, Phys. Rev. Lett. 98(20), 206805 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    L. Jiao, X. Wang, G. Diankov, H. Wang, and H. Dai, Facile synthesis of high-quality graphene nanoribbons, Nat. Nanotechnol. 5(5), 321 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    D. V. Kosynkin, A. L. Higginbotham, A. Sinitskii, J. R. Lomeda, A. Dimiev, B. K. Price, and J. M. Tour, Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons, Nature 458 (7240), 872 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    J. W. Bai, X. Zhong, S. Jiang, Y. Huang, and X. F. Duan, Graphene nanomesh, Nat. Nanotechnol. 5(3), 190 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    X. Liang, Y. S. Jung, S. Wu, A. Ismach, D. L. Olynick, S. Cabrini, and J. Bokor, Formation of bandgap and subbands in graphene nanomeshes with sub-10 nm ribbon width fabricated via nanoimprint lithography, Nano Lett. 10(7), 2454 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    L. A. Ponomarenko, F. Schedin, M. I. Katsnelson, R. Yang, E. W. Hill, K. S. Novoselov, and A. K. Geim, Chaotic Dirac billiard in graphene quantum dots, Science 320 (5874), 356 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    B. Song, G. F. Schneider, Q. Xu, G. Pandraud, C. Dekker, and H. Zandbergen, Atomic-scale electronbeam sculpting of near-defect-free graphene nanostructures, Nano Lett. 11(6), 2247 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    A. Sinitskii and J. M. Tour, Patterning graphene through the self-assembled templates: Toward periodic two-dimensional graphene nanostructures with semiconductor properties, J. Am. Chem. Soc. 132(42), 14730 (2010)CrossRefGoogle Scholar
  15. 15.
    L. Liu, Y. Zhang, W. Wang, C. Gu, X. Bai, and E. Wang, Nanosphere lithography for the fabrication of ultranarrow graphene nanoribbons and on-chip bandgap tuning of graphene, Adv. Mater. 23(10), 1246 (2011)CrossRefGoogle Scholar
  16. 16.
    M. Kim, N. S. Safron, E. Han, M. S. Arnold, and P. Gopalan, Fabrication and characterization of largearea, semiconducting nanoperforated graphene materials, Nano Lett. 10(4), 1125 (2010)Google Scholar
  17. 17.
    J. G. Son, M. Son, K. J. Moon, B. H. Lee, J. M. Myoung, M. S. Strano, M. H. Ham, and C. A. Ross, Sub-10 nm graphene nanoribbon array field-effect transistors fabricated by block copolymer lithography, Adv. Mater. 25(34), 4723 (2013)CrossRefGoogle Scholar
  18. 18.
    A. Sinitskii and J. M. Tour, Patterning graphene nanoribbons using copper oxide nanowires, Appl. Phys. Lett. 100(10), 103106 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    L. Liao, J. Bai, R. Cheng, Y. C. Lin, S. Jiang, Y. Huang, and X. Duan, Top-gated graphene nanoribbon transistors with ultrathin high-k dielectrics, Nano Lett. 10(5), 1917 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    L. Liao, J. Bai, Y. C. Lin, Y. Qu, Y. Huang, and X. Duan, High-performance top-gated graphenenanoribbon transistors using zirconium oxide nanowires as high-dielectric-constant gate dielectrics, Adv. Mater. 22(17), 1941 (2010)CrossRefGoogle Scholar
  21. 21.
    L. Liao, Y. C. Lin, M. Bao, R. Cheng, J. Bai, Y. Liu, Y. Qu, K. L. Wang, Y. Huang, and X. Duan, High-speed graphene transistors with a self-aligned nanowire gate, Nature 467 (7313), 305 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    W. Xu, H. K. Seo, S. Y. Min, H. Cho, T. S. Lim, C. Y. Oh, Y. Lee, and T. W. Lee, Rapid fabrication of designable large-scale aligned graphene nanoribbons by electro-hydrodynamic nanowire lithography, Adv. Mater. 26(21), 3459 (2014)CrossRefGoogle Scholar
  23. 23.
    S. Park, D. H. Lee, J. Xu, B. Kim, S. W. Hong, U. Jeong, T. Xu, and T. P. Russell, Macroscopic 10-terabit-persquare-inch arrays from block copolymers with lateral order, Science 323 (5917), 1030 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    Z. Huo, C. K. Tsung, W. Huang, M. Fardy, R. Yan, X. Zhang, Y. Li, and P. Yang, Self-organized ultrathin oxide nanocrystals, Nano Lett. 9(3), 1260 (2009)ADSCrossRefGoogle Scholar
  25. 25.
    J. D. Holmes, K. P. Johnston, R. Christopher Doty, and B. A. Korgel, Control of thickness and orientation of solution-grown silicon nanowires, Science 287 (5457), 1471 (2000)ADSCrossRefGoogle Scholar
  26. 26.
    C. Wang, Y. J. Hu, C. M. Lieber, and S. H. Sun, Ultrathin Au nanowires and their transport properties, J. Am. Chem. Soc. 130(28), 8902 (2008)CrossRefGoogle Scholar
  27. 27.
    X. Lu, M. S. Yavuz, H. Y. Tuan, B. A. Korgel, and Y. Xia, Ultrathin gold nanowires can be obtained by reducing polymeric strands of oleylamine-AuCl complexes formed via aurophilic interaction, J. Am. Chem. Soc. 130(28), 8900 (2008)CrossRefGoogle Scholar
  28. 28.
    J. W. Bai, X. F. Duan, and Y. Huang, Rational fabrication of graphene nanoribbons using a nanowire etch mask, Nano Lett. 9(5), 2083 (2009)ADSCrossRefGoogle Scholar
  29. 29.
    T. O. Wehling, S. Yuan, A. I. Lichtenstein, A. K. Geim, and M. I. Katsnelson, Resonant scattering by realistic impurities in graphene, Phys. Rev. Lett. 105(5), 056802 (2010)ADSCrossRefGoogle Scholar
  30. 30.
    L. C. Campos, V. R. Manfrinato, J. D. Sanchez-Yamagishi, J. Kong, and P. Jarillo-Herrero, Anisotropic etching and nanoribbon formation in single-layer graphene, Nano Lett. 9 (7), 2600 (2009)ADSCrossRefGoogle Scholar
  31. 31.
    S. S. Datta, D. R. Strachan, S. M. Khamis, and A. T. C. Johnson, Crystallographic etching of few-layer graphene, Nano Lett. 8(7), 1912 (2008)ADSCrossRefGoogle Scholar
  32. 32.
    L. Ci, Z. Xu, L. Wang, W. Gao, F. Ding, K. F. Kelly, B. I. Yakobson, and P. M. Ajayan, Controlled nanocutting of graphene, Nano Res. 1(2), 116 (2008)CrossRefGoogle Scholar
  33. 33.
    L. Ci, L. Song, D. Jariwala, A. L. ElÃas, W. Gao, M. Terrones, and P. M. Ajayan, Graphene shape control by multistage cutting and transfer, Adv. Mater. 21(44), 4487 (2009)CrossRefGoogle Scholar
  34. 34.
    R. Yang, L. Zhang, Y. Wang, Z. Shi, D. Shi, H. Gao, E. Wang, and G. Zhang, An anisotropic etching effect in the graphene Basal plane, Adv. Mater. 22(36), 4014 (2010)CrossRefGoogle Scholar
  35. 35.
    Z. Shi, R. Yang, L. Zhang, Y. Wang, D. Liu, D. Shi, E. Wang, and G. Zhang, Patterning graphene with zigzag edges by self-aligned anisotropic etching, Adv. Mater. 23(27), 3061 (2011)CrossRefGoogle Scholar
  36. 36.
    G. Wang, S. Wu, T. Zhang, P. Chen, X. Lu, S. Wang, D. Wang, K. Watanabe, T. Taniguchi, D. Shi, R. Yang, and G. Zhang, Patterning monolayer graphene with zigzag edges on hexagonal boron nitride by anisotropic etching, Appl. Phys. Lett. 109(5), 053101 (2016)ADSCrossRefGoogle Scholar
  37. 37.
    L. Weng, L. Zhang, Y. P. Chen, and L. P. Rokhinson, Atomic force microscope local oxidation nanolithography of graphene, Appl. Phys. Lett. 93(9), 093107 (2008)ADSCrossRefGoogle Scholar
  38. 38.
    G. Lu, X. Zhou, H. Li, Z. Yin, B. Li, L. Huang, F. Boey, and H. Zhang, Nanolithography of single-layer graphene oxide films by atomic force microscopy, Langmuir 26(9), 6164 (2010)CrossRefGoogle Scholar
  39. 39.
    K. Zhang, Q. Fu, N. Pan, X. Yu, J. Liu, Y. Luo, X. Wang, J. Yang, and J. Hou, Direct writing of electronic devices on graphene oxide by catalytic scanning probe lithography, Nat. Commun. 3, 1194 (2012)ADSCrossRefGoogle Scholar
  40. 40.
    S. Masubuchi, M. Ono, K. Yoshida, K. Hirakawa, and T. Machida, Fabrication of graphene nanoribbon by local anodic oxidation lithography using atomic force microscope, Appl. Phys. Lett. 94(8), 082107 (2009)ADSCrossRefGoogle Scholar
  41. 41.
    L. Tapasztó, G. Dobrik, P. Lambin, and L. P. Biró, Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography, Nat. Nanotechnol. 3 (7), 397 (2008)CrossRefGoogle Scholar
  42. 42.
    M. D. Fischbein and M. Drndic, Electron beam nanosculpting of suspended graphene sheets, Appl. Phys. Lett. 93(11), 113107 (2008)ADSCrossRefGoogle Scholar
  43. 43.
    D. C. Bell, M. C. Lemme, L. A. Stern, J. R. Williams, and C. M. Marcus, Precision cutting and patterning of graphene with helium ions, Nanotechnology 20(45), 455301 (2009)ADSCrossRefGoogle Scholar
  44. 44.
    D. Winston, V. R. Manfrinato, S. M. Nicaise, L. L. Cheong, H. Duan, D. Ferranti, J. Marshman, S. McVey, L. Stern, J. Notte, and K. K. Berggren, Neon ion beam lithography (NIBL), Nano Lett. 11(10), 4343 (2011)ADSCrossRefGoogle Scholar
  45. 45.
    A. Lerf, H. He, M. Forster, and J. Klinowski, Structure of graphite oxide revisited, J. Phys. Chem. B 102(23), 4477 (1998)CrossRefGoogle Scholar
  46. 46.
    L. Jiao, L. Zhang, L. Ding, J. Liu, and H. Dai, Aligned graphene nanoribbons and crossbars from unzipped carbon nanotubes, Nano Res. 3(6), 387 (2010)CrossRefGoogle Scholar
  47. 47.
    L. Xie, H. Wang, C. Jin, X. Wang, L. Jiao, K. Suenaga, and H. Dai, Graphene nanoribbons from unzipped carbon nanotubes: Atomic structures, Raman spectroscopy, and electrical properties, J. Am. Chem. Soc. 133(27), 10394 (2011)CrossRefGoogle Scholar
  48. 48.
    X. Wang, Y. Ouyang, L. Jiao, H. Wang, L. Xie, J. Wu, J. Guo, and H. Dai, Graphene nanoribbons with smooth edges behave as quantum wires, Nat. Nanotechnol. 6(9), 563 (2011)ADSCrossRefGoogle Scholar
  49. 49.
    Y. W. Son, M. L. Cohen, and S. G. Louie, Half-metallic graphene nanoribbons, Nature 444 (7117), 347 (2006)Google Scholar
  50. 50.
    B. Trauzettel, D. V. Bulaev, D. Loss, and G. Burkard, Spin qubits in graphene quantum dots, Nat. Phys. 3(3), 192 (2007)CrossRefGoogle Scholar
  51. 51.
    X. Yang, X. Dou, A. Rouhanipour, L. Zhi, H. J. Rader, and K. Mullen, Two-dimensional graphene nanoribbons, J. Am. Chem. Soc. 130(13), 4216 (2008)CrossRefGoogle Scholar
  52. 52.
    A. Narita, X. Feng, Y. Hernandez, S. A. Jensen, M. Bonn, H. Yang, I. A. Verzhbitskiy, C. Casiraghi, M. R. Hansen, A. H. Koch, G. Fytas, O. Ivasenko, B. Li, K. S. Mali, T. Balandina, S. Mahesh, S. De Feyter, and K. Mullen, Synthesis of structurally well-defined and liquid-phase-processable graphene nanoribbons, Nat. Chem. 6(2), 126 (2013)CrossRefGoogle Scholar
  53. 53.
    J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, M. Muoth, A. P. Seitsonen, M. Saleh, X. Feng, K. Mullen, and R. Fasel, Atomically precise bottom-up fabrication of graphene nanoribbons, Nature 466 (7305), 470 (2010)ADSCrossRefGoogle Scholar
  54. 54.
    P. Ruffieux, S. Wang, B. Yang, C. Sanchez-Sanchez, J. Liu, T. Dienel, L. Talirz, P. Shinde, C. A. Pignedoli, D. Passerone, T. Dumslaff, X. Feng, K. Mullen, and R. Fasel, On-surface synthesis of graphene nanoribbons with zigzag edge topology, Nature 531 (7595), 489 (2016)ADSCrossRefGoogle Scholar
  55. 55.
    S. Blankenburg, J. Cai, P. Ruffieux, R. Jaafar, D. Passerone, X. Feng, K. Müllen, R. Fasel, and C. A. Pignedoli, Intraribbon heterojunction formation in ultranarrow graphene nanoribbons, ACS Nano 6(3), 2020 (2012)CrossRefGoogle Scholar
  56. 56.
    J. Cai, C. A. Pignedoli, L. Talirz, P. Ruffieux, H. Sode, L. Liang, V. Meunier, R. Berger, R. Li, X. Feng, K. Mullen, and R. Fasel, Graphene nanoribbon heterojunctions, Nat. Nanotechnol. 9(11), 896 (2014)ADSCrossRefGoogle Scholar
  57. 57.
    Y. C. Chen, T. Cao, C. Chen, Z. Pedramrazi, D. Haberer, D. G. de Oteyza, F. R. Fischer, S. G. Louie, and M. F. Crommie, Molecular bandgap engineering of bottom-up synthesized graphene nanoribbon heterojunctions, Nat. Nanotechnol. 10(2), 156 (2015)ADSCrossRefGoogle Scholar
  58. 58.
    P. Ruffieux, J. Cai, N. C. Plumb, L. Patthey, D. Prezzi, A. Ferretti, E. Molinari, X. Feng, K. Müllen, C. A. Pignedoli, and R. Fasel, Electronic structure of atomically precise graphene nanoribbons, ACS Nano 6, 6930 (2012)CrossRefGoogle Scholar
  59. 59.
    Y. C. Chen, D. G. de Oteyza, Z. Pedramrazi, C. Chen, F. R. Fischer, and M. F. Crommie, Tuning the band gap of graphene nanoribbons synthesized from molecular precursors, ACS Nano 7(7), 6123 (2013)CrossRefGoogle Scholar
  60. 60.
    T. H. Vo, M. Shekhirev, D. A. Kunkel, M. D. Morton, E. Berglund, L. Kong, P. M. Wilson, P. A. Dowben, A. Enders, and A. Sinitskii, Large-scale solution synthesis of narrow graphene nanoribbons, Nat. Commun. 5, 3189 (2014)ADSCrossRefGoogle Scholar
  61. 61.
    X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, Large-area synthesis of high-quality and uniform graphene films on copper foils, Science 324 (5932), 1312 (2009)ADSCrossRefGoogle Scholar
  62. 62.
    M. Sprinkle, M. Ruan, Y. Hu, J. Hankinson, M. Rubio-Roy, B. Zhang, X. Wu, C. Berger, and W. A. de Heer, Scalable templated growth of graphene nanoribbons on SiC, Nat. Nanotechnol. 5 (10), 727 (2010)ADSCrossRefGoogle Scholar
  63. 63.
    Q. Huang, J. J. Kim, G. Ali, and S. O. Cho, Widthtunable graphene nanoribbons on a SiC substrate with a controlled step height, Adv. Mater. 25(8), 1144 (2013)CrossRefGoogle Scholar
  64. 64.
    M. S. Nevius, F. Wang, C. Mathieu, N. Barrett, A. Sala, T. O. Mentes, A. Locatelli, and E. H. Conrad, The bottom-up growth of edge specific graphene nanoribbons, Nano Lett. 14(11), 6080 (2014)ADSCrossRefGoogle Scholar
  65. 65.
    K. Hayashi, S. Sato, M. Ikeda, C. Kaneta, and N. Yokoyama, Selective graphene formation on Copper twin crystals, J. Am. Chem. Soc. 134(30), 12492 (2012)CrossRefGoogle Scholar
  66. 66.
    T. Kato and R. Hatakeyama, Site- and alignmentcontrolled growth of graphene nanoribbons from nickel nanobars, Nat. Nanotechnol. 7(10), 651 (2012)ADSCrossRefGoogle Scholar
  67. 67.
    I. Martin-Fernandez, D. Wang, and Y. Zhang, Direct growth of graphene nanoribbons for large-scale device fabrication, Nano Lett. 12(12), 6175 (2012)ADSCrossRefGoogle Scholar
  68. 68.
    H. Ago, I. Tanaka, Y. Ogawa, R. M. Yunus, M. Tsuji, and H. Hibino, Lattice-oriented catalytic growth of graphene nanoribbons on heteroepitaxial nickel films, ACS Nano 7(12), 10825 (2013)CrossRefGoogle Scholar
  69. 69.
    R. M. Jacobberger, B. Kiraly, M. Fortin-Deschenes, P. L. Levesque, K. M. McElhinny, G. J. Brady, R. Rojas Delgado, S. Singha Roy, A. Mannix, M. G. Lagally, P. G. Evans, P. Desjardins, R. Martel, M. C. Hersam, N. P. Guisinger, and M. S. Arnold, Direct oriented growth of armchair graphene nanoribbons on germanium, Nat. Commun. 6, 8006 (2015)ADSCrossRefGoogle Scholar
  70. 70.
    X. Lu, W. Yang, S. Wang, S. Wu, P. Chen, J. Zhang, J. Zhao, J. Meng, G. Xie, D. Wang, G. Wang, T. T. Zhang, K. Watanabe, T. Taniguchi, R. Yang, D. Shi, and G. Zhang, Graphene nanoribbons epitaxy on boron nitride, Appl. Phys. Lett. 108(11), 113103 (2016)ADSCrossRefGoogle Scholar
  71. 71.
    M. Fujita, K. Wakabayashi, K. Nakada, and K. Kusakabe, Peculiar localized state at zigzag graphite edge, J. Phys. Soc. Jpn. 65(7), 1920 (1996)ADSCrossRefGoogle Scholar
  72. 72.
    K. Nakada, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, Edge state in graphene ribbons: Nanometer size effect and edge shape dependence, Phys. Rev. B 54(24), 17954 (1996)ADSCrossRefGoogle Scholar
  73. 73.
    L. Brey and H. A. Fertig, Electronic states of graphene nanoribbons studied with the Dirac equation, Phys. Rev. B 73(23), 235411 (2006)ADSCrossRefGoogle Scholar
  74. 74.
    M. Wimmer, A. R. Akhmerov, and F. Guinea, Robustness of edge states in graphene quantum dots, Phys. Rev. B 82(4), 045409 (2010)ADSCrossRefGoogle Scholar
  75. 75.
    K. Wakabayashi, M. Fujita, H. Ajiki, and M. Sigrist, Electronic and magnetic properties of nanographite ribbons, Phys. Rev. B 59(12), 8271 (1999)ADSCrossRefGoogle Scholar
  76. 76.
    J. Fernández-Rossier and J. J. Palacios, Magnetism in graphene nanoislands, Phys. Rev. Lett. 99(17), 177204 (2007)ADSCrossRefGoogle Scholar
  77. 77.
    K. Wakabayashi, S. Okada, R. Tomita, S. Fujimoto, and Y. Natsume, Edge states and flat bands of graphene nanoribbons with edge modification, J. Phys. Soc. Jpn. 79(3), 034706 (2010)ADSCrossRefGoogle Scholar
  78. 78.
    M. Ezawa, Peculiar width dependence of the electronic properties of carbon nanoribbons, Phys. Rev. B 73(4), 045432 (2006)ADSCrossRefGoogle Scholar
  79. 79.
    V. Barone, O. Hod, and G. E. Scuseria, Electronic structure and stability of semiconducting graphene nanoribbons, Nano Lett. 6(12), 2748 (2006)ADSCrossRefGoogle Scholar
  80. 80.
    Y. W. Son, M. L. Cohen, and S. G. Louie, Energy gaps in graphene nanoribbons, Phys. Rev. Lett. 97(21), 216803 (2006)ADSCrossRefGoogle Scholar
  81. 81.
    Z. Klusek, Z. Waqar, E. A. Denisov, T. N. Kompaniets, I. V. Makarenko, A. N. Titkov, and A. S. Bhatti, Observations of local electron states on the edges of the circular pits on hydrogen-etched graphite surface by scanning tunneling spectroscopy, Appl. Surf. Sci. 161(3–4), 508 (2000)ADSCrossRefGoogle Scholar
  82. 82.
    Y. Kobayashi, K.i. Fukui, T. Enoki, K. Kusakabe, and Y. Kaburagi, Observation of zigzag and armchair edges of graphite using scanning tunneling microscopy and spectroscopy, Phys. Rev. B 71, 193406 (2005)ADSCrossRefGoogle Scholar
  83. 83.
    Y. Niimi, T. Matsui, H. Kambara, K. Tagami, M. Tsukada, and H. Fukuyama, Scanning tunneling microscopy and spectroscopy of the electronic local density of states of graphite surfaces near monoatomic step edges, Phys. Rev. B 73(8), 085421 (2006)ADSCrossRefGoogle Scholar
  84. 84.
    K. A. Ritter and J. W. Lyding, The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons, Nat. Mater. 8(3), 235 (2009)ADSCrossRefGoogle Scholar
  85. 85.
    J. G. Wildoer, L. C. Venema, A. G. Rinzler, R. E. Smalley, and C. Dekker, Electronic structure of atomically resolved carbon nanotubes, Nature 391 (6662), 59 (1998)ADSCrossRefGoogle Scholar
  86. 86.
    G. Z. Magda, X. Jin, I. Hagymasi, P. Vancso, Z. Osvath, P. Nemes-Incze, C. Hwang, L. P. Biro, and L. Tapaszto, Room-temperature magnetic order on zigzag edges of narrow graphene nanoribbons, Nature 514 (7524), 608 (2014)ADSCrossRefGoogle Scholar
  87. 87.
    J. Jung and A. H. MacDonald, Carrier density and magnetism in graphene zigzag nanoribbons, Phys. Rev. B 79(23), 235433 (2009)ADSCrossRefGoogle Scholar
  88. 88.
    M. Golor, T. C. Lang, and S. Wessel, Quantum Monte Carlo studies of edge magnetism in chiral graphene nanoribbons, Phys. Rev. B 87(15), 155441 (2013)ADSCrossRefGoogle Scholar
  89. 89.
    K. Wakabayashi and M. Sigrist, Zero-conductance resonances due to flux states in nanographite ribbon junctions, Phys. Rev. Lett. 84(15), 3390 (2000)ADSCrossRefGoogle Scholar
  90. 90.
    A. Rycerz, J. Tworzydlo, and C. W. J. Beenakker, Valley filter and valley valve in graphene, Nat. Phys. 3(3), 172 (2007)CrossRefGoogle Scholar
  91. 91.
    A. R. Akhmerov, J. H. Bardarson, A. Rycerz, and C. W. J. Beenakker, Theory of the valley-valve effect in graphene nanoribbons, Phys. Rev. B 77(20), 205416 (2008)ADSCrossRefGoogle Scholar
  92. 92.
    C. L. Kane and E. J. Mele, Quantum spin Hall effect in graphene, Phys. Rev. Lett. 95(22), 226801 (2005)ADSCrossRefGoogle Scholar
  93. 93.
    K. Wakabayashi, Y. Takane, and M. Sigrist, Perfectly conducting channel and universality crossover in disordered graphene nanoribbons, Phys. Rev. Lett. 99(3), 036601 (2007)ADSCrossRefGoogle Scholar
  94. 94.
    C. W. J. Beenakker, Random-matrix theory of quantum transport, Rev. Mod. Phys. 69(3), 731 (1997)ADSMathSciNetCrossRefGoogle Scholar
  95. 95.
    S. Adam, S. Cho, M. S. Fuhrer, and S. Das Sarma, Density Inhomogeneity driven percolation metal-insulator transition and dimensional crossover in graphene nanoribbons, Phys. Rev. Lett. 101 (4), 046404 (2008)ADSCrossRefGoogle Scholar
  96. 96.
    F. Sols, F. Guinea, and A. H. Neto, Coulomb blockade in graphene nanoribbons, Phys. Rev. Lett. 99(16), 166803 (2007)ADSCrossRefGoogle Scholar
  97. 97.
    M. Yamamoto, Y. Takane, and K. Wakabayashi, Nearly perfect single-channel conduction in disordered armchair nanoribbons, Phys. Rev. B 79(12), 125421 (2009)ADSCrossRefGoogle Scholar
  98. 98.
    M. Evaldsson, I. V. Zozoulenko, H. Xu, and T. Heinzel, Edge-disorder-induced Anderson localization and conduction gap in graphene nanoribbons, Phys. Rev. B 78(16), 161407 (2008)ADSCrossRefGoogle Scholar
  99. 99.
    I. Martin and Y. M. Blanter, Transport in disordered graphene nanoribbons, Phys. Rev. B 79(23), 235132 (2009)ADSCrossRefGoogle Scholar
  100. 100.
    H. Suzuura and T. Ando, Crossover from symplectic to orthogonal class in a two-dimensional honeycomb lattice, Phys. Rev. Lett. 89(26), 266603 (2002)ADSCrossRefGoogle Scholar
  101. 101.
    K. Wakabayashi, Y. Takane, and M. Sigrist, Perfectly conducting channel and universality crossover in disordered graphene nanoribbons, Phys. Rev. Lett. 99(3), 036601 (2007)ADSCrossRefGoogle Scholar
  102. 102.
    K. Wakabayashi and T. Aoki, Electrical conductance of zigzag nanographite ribbons with locally applied gate voltage, Int. J. Mod. Phys. B 16(32), 4897 (2002)ADSCrossRefGoogle Scholar
  103. 103.
    E. R. Mucciolo, A. H. Castro Neto, and C. H. Lewenkopf, Conductance quantization and transport gaps in disordered graphene nanoribbons, Phys. Rev. B 79(7), 075407 (2009)ADSCrossRefGoogle Scholar
  104. 104.
    Z. Qiao, X. Li, W. K. Tse, H. Jiang, Y. Yao, and Q. Niu, Topological phases in gated bilayer graphene: Effects of Rashba spin-orbit coupling and exchange field, Phys. Rev. B 87(12), 125405 (2013)ADSCrossRefGoogle Scholar
  105. 105.
    Z. Qiao, S. A. Yang, B. Wang, Y. Yao, and Q. Niu, Spinpolarized and valley helical edge modes in graphene nanoribbons, Phys. Rev. B 84(3), 035431 (2011)ADSCrossRefGoogle Scholar
  106. 106.
    Z. Qiao, W. Ren, H. Chen, L. Bellaiche, Z. Zhang, A. H. Macdonald, and Q. Niu, Quantum anomalous Hall effect in graphene proximity coupled to an antiferromagnetic insulator, Phys. Rev. Lett. 112(11), 116404 (2014)ADSCrossRefGoogle Scholar
  107. 107.
    N. Tombros, A. Veligura, J. Junesch, M. H. D. Guimarães, I. J. Vera-Marun, H. T. Jonkman, and B. J. van Wees, Quantized conductance of a suspended graphene nanoconstriction, Nat. Phys. 7 (9), 697 (2011)CrossRefGoogle Scholar
  108. 108.
    D. K. Ki and A. F. Morpurgo, Crossover from coulomb blockade to quantum Hall effect in suspended graphene nanoribbons, Phys. Rev. Lett. 108(26), 266601 (2012)ADSCrossRefGoogle Scholar
  109. 109.
    C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, Boron nitride substrates for highquality graphene electronics, Nat. Nanotechnol. 5(10), 722 (2010)ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Authors and Affiliations

  • Tingting Zhang
    • 1
    • 2
  • Shuang Wu
    • 1
    • 2
  • Rong Yang
    • 1
    • 2
    • 3
  • Guangyu Zhang
    • 1
    • 2
    • 3
    • 4
  1. 1.Institute of PhysicsChinese Academy of SciencesBeijingChina
  2. 2.School of Physical SciencesUniversity of Chinese Academy of SciencesBeijingChina
  3. 3.Beijing Key Laboratory for Nanomaterials and NanodevicesBeijingChina
  4. 4.Collaborative Innovation Center of Quantum MatterBeijingChina

Personalised recommendations