Frontiers of Physics

, Volume 12, Issue 6, pp 1–15 | Cite as

Constructing backbone network by using tinker algorithm

  • Zhiwei He
  • Meng Zhan
  • Jianxiong Wang
  • Chenggui Yao
Research article
Part of the following topical collections:
  1. Soft-Matter Physics and Complex Systems


Revealing how a biological network is organized to realize its function is one of the main topics in systems biology. The functional backbone network, defined as the primary structure of the biological network, is of great importance in maintaining the main function of the biological network. We propose a new algorithm, the tinker algorithm, to determine this core structure and apply it in the cell-cycle system. With this algorithm, the backbone network of the cell-cycle network can be determined accurately and efficiently in various models such as the Boolean model, stochastic model, and ordinary differential equation model. Results show that our algorithm is more efficient than that used in the previous research. We hope this method can be put into practical use in relevant future studies.


biological network backbone network tinker algorithm mathematical model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. A. Kauffman, The Origins of Order: Self-organization and Selection in Evolution, New York: Oxford University Press, 1993Google Scholar
  2. 2.
    U. Alon, An Introduction to System Biology: Design Principles of Biological Circuits, Boca Raton: Chapman & Hall, 2006MATHGoogle Scholar
  3. 3.
    I. Rigoutsos and G. Stephanopoulos, Systems Biology: Networks, Models, and Applications, New York: Oxford University Press, 2007Google Scholar
  4. 4.
    X. F. Pang, Influence of structure disorders and temperatures of systems on the bio-energy transport in protein molecules (II), Front. Phys. 3(4), 457 (2008)Google Scholar
  5. 5.
    D. T. Gillespie, A general method for numerically simulating the stochastic time evolution of coupled chemical reactions, J. Comput. Phys. 22(4), 403 (1976)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    H. de Jong, Modeling and simulation of genetic regulatory systems: A literature review, J. Comput. Biol. 9(1), 67 (2002)CrossRefGoogle Scholar
  7. 7.
    X. Cai and Z. M. Yuan, Stochastic modeling and simulation of the p53-MDM2/MDMX loop, J. Comput. Biol. 16(7), 917 (2009)CrossRefGoogle Scholar
  8. 8.
    Y. P. Zhang, M. P. Qian, Q. Ouyang, M. H. Deng, F. T. Li, and C. Tang, Stochastic model of yeast cell-cycle network, Physica D 219(1), 35 (2006)ADSMathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    K. C. Chen, A. Csikász-Nagy, B. Gyorffy, J. Val, B. Novak, and J. J. Tyson, Kinetic analysis of a molecular model of the budding yeast cell cycle, Mol. Biol. Cell 11(1), 369 (2000)CrossRefGoogle Scholar
  10. 10.
    B. Novak, Z. Pataki, A. Ciliberto, and J. J. Tyson, Mathematical model of the cell division cycle of fission yeast., Chaos 11(1), 277 (2001)ADSCrossRefMATHGoogle Scholar
  11. 11.
    J. J. Tyson, K. Chen, and B. Novak, Network dynamics and cell physiology, Nat. Rev. Mol. Cell Biol. 2(12), 908 (2001)Google Scholar
  12. 12.
    J. J. Tyson, K. C. Chen, and B. Novak, Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell, Curr. Opin. Cell Biol. 15(2), 221 (2003)CrossRefGoogle Scholar
  13. 13.
    A. Csikász-Nagy, Computational systems biology of the cell cycle, Brief. Bioinformatics 10(4), 424 (2009)CrossRefGoogle Scholar
  14. 14.
    S. A. Kauffman, Metabolic stability and epigenesis in randomly constructed genetic nets, J. Theor. Biol. 22(3), 437 (1969)MathSciNetCrossRefGoogle Scholar
  15. 15.
    F. Li, T. Long, Y. Lu, Q. Ouyang, and C. Tang, The yeast cell-cycle network is robustly designed, Proc. Natl. Acad. Sci. USA 101(14), 4781 (2004)ADSCrossRefGoogle Scholar
  16. 16.
    S. Bornholdt, Systems biology. Less is more in modeling large genetic networks, Science 310(5747), 449 (2005)CrossRefGoogle Scholar
  17. 17.
    G. Wang, C. Du, H. Chen, R. Simha, Y. Rong, Y. Xiao, and C. Zeng, Process-based network decomposition reveals backbone motif structure, Proc. Natl. Acad. Sci. USA 107(23), 10478 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    Q. Z. Xia, L. L. Liu, W. M. Ye, and G. Hu, Inference of gene regulatory networks with the strong-inhibition Boolean model, New J. Phys. 13(8), 083002 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    G. Wang, Y. Rong, H. Chen, C. Pearson, C. Du, R. Simha, and C. Zeng, Process-driven inference of biological network structure: Feasibility, minimality, and multiplicity, PLoS ONE 7(7), e40330 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    M. I. Davidich and S. Bornholdt, Boolean network model predicts cell cycle sequence of fission yeast, PLoS ONE 3(2), e1672 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    M. I. Davidich and S. Bornholdt, Boolean network model predicts knockout mutant phenotypes of fission yeast, PLoS ONE 8(9), e71786 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    H. Kitano, Biological robustness, Nat. Rev. Genet. 5(11), 826 (2004)CrossRefGoogle Scholar
  23. 23.
    J. Stelling, U. Sauer, Z. Szallasi, F. III. Doyle, and J. Doyle, Robustness of cellular functions, Cell 118(6), 675 (2004)CrossRefGoogle Scholar
  24. 24.
    A. Wagner, Robustness and Evolvability in Living Systems, Princeton Studies in Complexity, Princeton: Princeton University Press, 2005Google Scholar
  25. 25.
    G. M. Cooper, The Cell: A Molecular Approach, Chapter 14, Washington: ASM Press, 2000Google Scholar
  26. 26.
    M. Morohashi, A. E. Winn, M. T. Borisuk, H. Bolouri, J. Doyle, and H. Kitano, Robustness as a measure of plausibility in models of biochemical networks, J. Theor. Biol. 216(1), 19 (2002)MathSciNetCrossRefGoogle Scholar
  27. 27.
    U. de Lichtenberg, L. J. Jensen, A. Fausbøll, T. S. Jensen, P. Bork, and S. Brunak, Comparison of computational methods for the identification of cell cycleregulated genes, Bioinformatics 21(7), 1164 (2005)CrossRefGoogle Scholar
  28. 28.
    F. T. Li, M. Y. Hu, B. Zhao, H. Yan, B. Wu, and Q. Ouyang, A globally attractive cycle driven by sequential bifurcations containing ghost effects in a 3-node yeast cell cycle model, arXiv: 1312.5204 (2014)Google Scholar
  29. 29.
    X. M. Zhang, B. Shao, Y. L. Wu, and Q. Ouyang, A reverse engineering approach to optimize experiments for the construction of biological regulatory networks, PLoS ONE 8(9), e75931 (2013)ADSCrossRefGoogle Scholar
  30. 30.
    L. Yang, Y. Meng, C. Bao, W. Liu, C. Ma, A. Li, Z. Xuan, G. Shan, and Y. Jia, Robustness and backbone motif of a cancer network regulated by miR-17-92 cluster during the G1/S transition, PLoS ONE 8(3), e57009 (2013)ADSCrossRefGoogle Scholar
  31. 31.
    F. Jacob, Evolution and tinkering, Science 196(4295), 1161 (1977)ADSCrossRefGoogle Scholar
  32. 32.
    U. Alon, Biological networks: The tinkerer as an engineer, Science 301(5641), 1866 (2003)ADSCrossRefGoogle Scholar
  33. 33.
    U. Alon, Network motifs: Theory and experimental approaches, Nat. Rev. Genet. 8(6), 450 (2007)CrossRefGoogle Scholar
  34. 34.
    R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon, Network motifs: Simple building blocks of complex networks., Science 298(5594), 824 (2002)ADSCrossRefGoogle Scholar
  35. 35.
    C. Oosawa and M. A. Savageau, Effects of alternative connectivity on behavior of randomly constructed Boolean networks, Physica D 170(2), 143 (2002)ADSCrossRefMATHGoogle Scholar
  36. 36.
    S. Bornholdt and T. Rohlf, Topological evolution of dynamical networks: Global criticality from local dynamics, Phys. Rev. Lett. 84, 6114 (2000)ADSCrossRefGoogle Scholar
  37. 37.
    M. C. Costanzo, M. E. Crawford, J. E. Hirschman, J. E. Kranz, P. Olsen, L. S. Robertson, M. S. Skrzypek, B. R. Braun, K. L. Hopkins, P. Kondu, C. Lengieza, J. E. Lew-Smith, M. Tillberg, and J. I. Garrels, YPD, PombePD and WormPD: model organism volumes of the BioKnowledge Library, an integrated resource for protein information, Nucleic Acids Res. 29(1), 75 (2001)CrossRefGoogle Scholar
  38. 38.
    T. I. Lee, N. J. Rinaldi, F. Robert, D. T. Odom, Z. Bar-Joseph, G. K. Gerber, N. M. Hannett, C. T. Harbison, C. M. Thompson, I. Simon, J. Zeitlinger, E. G. Jennings, H. L. Murray, D. B. Gordon, B. Ren, J. J. Wyrick, J. B. Tagne, T. L. Volkert, E. Fraenkel, D. K. Gifford, and R. A. Young, Transcriptional regulatory networks in Saccharomyces cerevisiae, Science 298(5594), 799 (2002)ADSCrossRefGoogle Scholar
  39. 39.
    L. Mendoza and I. Xenarios, A method for the generation of standardized qualitative dynamical systems of regulatory networks, Theor. Biol. Med. Model 3(1), 13 (2006)CrossRefGoogle Scholar
  40. 40.
    B. Novak and J. J. Tyson, Modeling the control of DNA replication in fission yeast, Proc. Natl. Acad. Sci. USA 94(17), 9147 (1997)ADSCrossRefGoogle Scholar
  41. 41.
    A. Sveiczer, A. Csikász-Nagy, B. Gyorffy, J. J. Tyson, and B. Novak, Modeling the fission yeast cell cycle: Quantized cycle times in wee1-cdc25Delta mutant cells, Proc. Natl. Acad. Sci. USA 97(14), 7865 (2000)ADSCrossRefGoogle Scholar
  42. 42.
    B. Li, B. Shao, C. Yu, Q. Ouyang, and H. Wang, A mathematical model for cell size control in fission yeast, J. Theor. Biol. 264(3), 771 (2010)CrossRefGoogle Scholar
  43. 43.
    M. Davidich and S. Bornholdt, The transition from differential equations to Boolean networks: A case study in simplifying a regulatory network model, J. Theor. Biol. 255(3), 269 (2008)CrossRefGoogle Scholar
  44. 44.
    Z. Y. Zhang, Z. Y. Li, G. Hu, and Z. G. Zheng, Exploring cores and skeletons in oscillatory gene regulatory networks by a functional weight approach, EPL 105(1), 18003 (2014)ADSCrossRefGoogle Scholar
  45. 45.
    X. Liao, Q. Xia, Y. Qian, L. Zhang, G. Hu, and Y. Mi, Pattern formation in oscillatory complex networks consisting of excitable nodes, Phys Rev E 83, 056204 (2011)ADSCrossRefGoogle Scholar
  46. 46.
    B. Novak, A. Csikász-Nagy, B. Gyorffy, K. Nasmyth, and J. J. Tyson, Model scenarios for evolution of the eukaryotic cell cycle, Philos. Trans. R. Soc. Lond. B 353(1378), 2063 (1998)CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Zhiwei He
    • 1
  • Meng Zhan
    • 2
  • Jianxiong Wang
    • 3
  • Chenggui Yao
    • 1
  1. 1.Department of MathematicsShaoxing UniversityShaoxingChina
  2. 2.State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic EngineeringHuazhong University of Science and TechnologyWuhanChina
  3. 3.College of ScienceHubei University of TechnologyWuhanChina

Personalised recommendations