Skip to main content
Log in

Renormalization group theory for temperature-driven first-order phase transitions in scalar models

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

We study the scaling and universal behavior of temperature-driven first-order phase transitions in scalar models. These transitions are found to exhibit rich phenomena, though they are controlled by a single complex-conjugate pair of imaginary fixed points of ϕ 3 theory. Scaling theories and renormalization group theories are developed to account for the phenomena, and three universality classes with their own hysteresis exponents are found: a field-like thermal class, a partly thermal class, and a purely thermal class, designated, respectively, as Thermal Classes I, II, and III. The first two classes arise from the opposite limits of the scaling forms proposed and may cross over to each other depending on the temperature sweep rate. They are both described by a massless model and a purely massive model, both of which are equivalent and are derived from ϕ 3 theory via symmetry. Thermal Class III characterizes the cooling transitions in the absence of applied external fields and is described by purely thermal models, which include cases in which the order parameters possess different symmetries and thus exhibit different universality classes. For the purely thermal models whose free energies contain odd-symmetry terms, Thermal Class III emerges only at the mean-field level and is identical to Thermal Class II. Fluctuations change the model into the other two models. Using the extant three- and two-loop results for the static and dynamic exponents for the Yang–Lee edge singularity, respectively, which falls into the same universality class as ϕ 3 theory, we estimate the thermal hysteresis exponents of the various classes to the same precision. Comparisons with numerical results and experiments are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and notes

  1. Z. C. Lin, K. F. Liang, W. G. Zeng, and J. X. Zhang, Dynamic equation and characteristic internal frictions of mobile interfaces in phase transitions, in: Internal Friction and Ultrasonic Attenuation, eds. T. S. Ke and L. D. Zhang, Beijing: Atomic Energy Press of China, 1989, p. 87

    Google Scholar 

  2. K. F. Liang, Z. C. Lin, P. C. W. Fung, and J. X. Zhang, Characterization of the thermoelastic martensitic transformation in a NiTi alloy driven by temperature variation and external stress, Phys. Rev. B 56(5), 2453 (1997)

    Article  ADS  Google Scholar 

  3. See, e. g., J. X. Zhang, F. Zhong, and G. G. Siu, The scanning-rate dependence of energy dissipation in firstorder phase transition of solids, Solid State Commun. 97(10), 847 (1996)

    Article  ADS  Google Scholar 

  4. J. Liu and J. X. Zhang, Temperature-rate dependent kinetics of martensitic transformation in MnCu alloy, Solid State Commun. 98(6), 539 (1996)

    Article  ADS  Google Scholar 

  5. P. C. W. Fung, J. X. Zhang, Y. Lin, K. F. Liang, and Z. C. Lin, Analysis of dissipation of a burst-type martensite transformation in a Fe-Mn alloy by internal friction measurements, Phys. Rev. B 54(10), 7074 (1996)

    Article  ADS  Google Scholar 

  6. Z. Q. Kuang, J. X. Zhang, X. H. Zhang, K. F. Liang, and P. C. W. Fung, Scaling behaviours in the thermoelastic martensitic transformation of Co, Solid State Commun. 114(4), 231 (2000)

    Article  ADS  Google Scholar 

  7. M. Rao and R. Pandit, Magnetic and thermal hysteresis in the O(N)-symmetric (ϕ 2)3 model, Phys. Rev. B 43(4), 3373 (1991)

    Article  ADS  Google Scholar 

  8. F. Zhong and J. X. Zhang, Scaling of thermal hysteresis with temperature scanning rate, Phys. Rev. E 51(4), 2898 (1995)

    Article  Google Scholar 

  9. S. Yıldız, Ö. Pekcan, A. N. Berker, and H. Özbek, Scaling of thermal hysteresis at nematic-smectic-A phase transition in a binary mixture, Phys. Rev. E 69(3), 031705 (2004)

    Article  ADS  Google Scholar 

  10. F. Zhong, and Q. Z. Chen, Theory of the dynamics of first-order phase transitions: Unstable fixed points, exponents, and dynamical scaling, Phys. Rev. Lett. 95(17), 175701 (2005)

    Article  ADS  Google Scholar 

  11. F. Zhong, Renormalization-group theory of first-order phase transition dynamics in field-driven scalar model, Front. Phys. 12, 126403 (2017)

    Article  Google Scholar 

  12. F. Zhong, Imaginary fixed points can be physical, Phys. Rev. E 86(2), 022104 (2012)

    Article  ADS  Google Scholar 

  13. S. Fan and F. Zhong, Evidences of the instability fixed points of first-order phase transitions, J. Stat. Phys. 143(6), 1136 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Y. T. Li and F. Zhong, Functional renormalization group approach to the dynamics of first-order phase transitions, arXiv: 1111.1573 (2011)

    Google Scholar 

  15. M. E. Fisher, Yang–Lee edge singularity and ϕ 3 field theory, Phys. Rev. Lett. 40(25), 1610 (1978)

    Article  ADS  Google Scholar 

  16. J. D. Gunton and D. Droz, Introduction to the Theory of Metastable and Unstable States, Berlin: Springer, 1983

    Book  Google Scholar 

  17. J. D. Gunton, M. San Miguel, and P. S. Sahni, in: Phase Transitions and Critical Phenomena, eds. C. Domb and J. L. Lebowitz, Vol. 8, London: Academic, 1983

  18. K. Binder, Theory of first-order phase transitions, Rep. Prog. Phys. 50(7), 783 (1987)

    Article  ADS  Google Scholar 

  19. K. Binder and P. Fratzl, in: Phase Transformations in Materials, ed. G. Kostorz, Weinheim: Wiley, 2001

  20. K. Binder, C. Billotet, and P. Mirold, On the theory of spinodal decomposition in solid and liquid binary mixtures, Z. Phys. B 30(2), 183 (1978)

    Article  ADS  Google Scholar 

  21. C. Billotet and K. Binder, Nonlinear relaxation at firstorder phase transitions: A Ginzburg–Landau theory including fluctuations, Z. Phys. B 32(2), 195 (1979)

    Article  ADS  Google Scholar 

  22. K. Kawasaki, T. Imaeda, and J. D. Gunton, in: Perspectives in Statistical Physics, ed. H. J. Raveché, Amsterdam: North Holland, 1981, p. 201

  23. K. Kaski, K. Binder, and J. D. Gunton, A study of a coarse-grained free energy functional for the threedimensional Ising model, J. Phys. A 16(16), L623 (1983)

    Article  ADS  Google Scholar 

  24. K. Kaski, K. Binder, and J. D. Gunton, Study of cell distribution functions of the three-dimensional Ising model, Phys. Rev. B 29(7), 3996 (1984)

    Article  ADS  Google Scholar 

  25. D. W. Heermann, W. Klein, and D. Stauffer, Spinodals in a long-range interaction system, Phys. Rev. Lett. 49, 1262 (1982)

    Article  ADS  Google Scholar 

  26. N. Gulbahce, H. Gould, and W. Klein, Zeros of the partition function and pseudospinodals in long-range Ising models, Phys. Rev. E 69(3), 036119 (2004)

    Article  ADS  Google Scholar 

  27. J. S. Langer, Theory of the condensation point, Ann. Phys. 41(1), 108 (1967)

    Article  ADS  Google Scholar 

  28. W. Klein and C. Unger, Pseudospinodals, spinodals, and nucleation, Phys. Rev. B 28(1), 445 (1983)

    Article  ADS  Google Scholar 

  29. C. Unger and W. Klein, Nucleation theory near the classical spinodal, Phys. Rev. B 29(5), 2698 (1984)

    Article  ADS  Google Scholar 

  30. D. W. Oxtoby, Homogeneous nucleation: Theory and experiment, J. Phys.: Condens. Matter 4(38), 7627 (1992)

    ADS  Google Scholar 

  31. P. B. Thomas and D. Dhar, Hysteresis in isotropic spin systems, J. Phys. A 26(16), 3973 (1993)

    Article  ADS  Google Scholar 

  32. S. W. Sides, P. A. Rikvold, and M. A. Novotny, Stochastic hysteresis and resonance in a kinetic Ising system, Phys. Rev. E 57(6), 6512 (1998)

    Article  ADS  Google Scholar 

  33. S. W. Sides, P. A. Rikvold, and M. A. Novotny, Kinetic Ising model in an oscillating field: Avrami theory for the hysteretic response and finite-size scaling for the dynamic phase transition, Phys. Rev. E 59(3), 2710 (1999)

    Article  ADS  Google Scholar 

  34. M. Acharyya and B. K. Chakrabarti, Response of Ising systems to oscillating and pulsed fields: Hysteresis, ac, and pulse susceptibility, Phys. Rev. B 52(9), 6550 (1995)

    Article  ADS  Google Scholar 

  35. L. D. Landau and E. M. Lifshitz, Statistical Physics, Ch. XIV, Oxford: Pergamon, 1986

    Google Scholar 

  36. P. G. de Gennes, Short range order effects in the isotropic phase of nematics and cholesterics, Mol. Cryst. Liq. Cryst. 12(3), 193 (1971)

    Article  Google Scholar 

  37. A. F. Devonshire, Theory of barium titanate (Part I), Phil. Mag. 40, 1040 (1949); A. F. Devonshire, Theory of barium titanate (Part II), Phil. Mag. 42, 1065 (1951)

    Article  Google Scholar 

  38. P. C. Hohenberg, and B. I. Halperin, Theory of dynamic critical phenomena, Rev. Mod. Phys. 49(3), 435 (1977)

    Article  ADS  Google Scholar 

  39. N. Breuer and H. K. Janssen, Equation of state and dynamical properties near the Yang–Lee edge singularity, Z. Phys. Condensed Matter 41(1), 55 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  40. F. Zhong, Probing criticality with linearly varying external fields: Renormalization group theory of nonequilibrium critical dynamics under driving, Phys. Rev. E 73(4), 047102 (2006)

    Article  ADS  Google Scholar 

  41. S. Gong, F. Zhong, X. Huang, and S. Fan, Finite-time scaling via linear driving, New J. Phys. 12(4), 043036 (2010)

    Article  ADS  Google Scholar 

  42. F. Zhong, Finite-time scaling and its applications to continuous phase transitions, in Applications of Monte Carlo Method in Science and Engineering, ed. S. Mordechai, p. 469, Rijeka: Intech, 2011. Available at http://www.intechopen.com/articles/show/title/finite-time-scaling-and-its-applications-to-continuousphase-transitions

    Google Scholar 

  43. CRC Standard Mathematical Tables & Formulae, ed. D. Zwillinger, 30th Ed., Florida: CRC, 1996

  44. P. Jung, G. Gray, R. Roy, and P. Mandel, Scaling law for dynamical hysteresis, Phys. Rev. Lett. 65(15), 1873 (1990)

    Article  ADS  Google Scholar 

  45. J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, 3rd Ed., Oxford: Clarendon, 1996

    MATH  Google Scholar 

  46. D. J. Amit and V. Martin-Mayor, Field Theory, the Renormalization Group, and Critical Phenomena, 3nd Ed., Singapore: World Scientific, 2005

    Book  MATH  Google Scholar 

  47. H. Kleinert and V. Schulte-Frohlinde, Critical Properties of ϕ 4-Theory, Singapore: World Scientific, 2001

    Book  MATH  Google Scholar 

  48. A. N. Vasil’ev, The Field Theoretic Renormalization Group in Critical Behavior Theory and Stochastic Dynamics, London: Chapman and Hall/CRC, 2004

    Book  MATH  Google Scholar 

  49. F. J. Wegner and E. K. Riedel, Logarithmic corrections to the molecular-field behavior of critical and tricritical systems, Phys. Rev. B 7(1), 248 (1973)

    Article  ADS  Google Scholar 

  50. K. G. Wilson and J. Kogut, The renormalization group and the ϵ expansion, Phys. Rep. 12(2), 75 (1974)

    Article  ADS  Google Scholar 

  51. S. K. Ma, Modern Theory of Critical Phenomena, Benjamin, 1976

    Google Scholar 

  52. H. K. Janssen, in: Dynamical Critical Phenomena and Related topics, Lecture Notes in Physics, Vol. 104, ed. C. P. Enz, Berlin: Springer, 1979

  53. H. K. Janssen, in: From Phase Transition to Chaos, edited by G. Györgyi, I. Kondor, L. Sasvári, and T. Tél, Singapore: World Scientific, 1992

  54. U. C. Täuber, Critical Dynamics, http://www.phys.vt. edu/~tauber/utaeuber.html

  55. P. C. Martin, E. D. Siggia, and H. A. Rose, Statistical dynamics of classical systems, Phys. Rev. A 8(1), 423 (1973)

    Article  ADS  Google Scholar 

  56. G. ’t Hooft and M. Veltman, Regularization and renormalization of gauge fields, Nucl. Phys. B 44(1), 189 (1972)

    Article  ADS  MathSciNet  Google Scholar 

  57. C. De Dominicis and L. Peliti, Field-theory renormalization and critical dynamics above T c: Helium, antiferromagnets, and liquid-gas systems, Phys. Rev. B 18(1), 353 (1978)

    Article  ADS  Google Scholar 

  58. O. F. A. Bonfim, J. E. Kirkham, and A. J. McKane, Critical exponents to order ϵ 3 for ϕ 3 models of critical phenomena in 6-ϵ dimensions, J. Phys. Math. Gen. 13(7), L247 (1980)

    Article  Google Scholar 

  59. O. F. A. Bonfirm, J. E. Kirkham, and A. J. McKane, Critical exponents for the percolation problem and the Yang–Lee edge singularity, J. Phys. Math. Gen. 14(9), 2391 (1981)

    Article  ADS  Google Scholar 

  60. J. Yu, Scaling of first-order phase transition dynamics, Master thesis, Sun Yat-sen University, 2012 (unpublished)

    Google Scholar 

Download references

Acknowledgements

We thank Shuai Yin and Baoquan Feng for their helpful discussions. This work was supported by the National Natural Science foundation of PRC (Grants Nos. 10625420 and 11575297) and FRFCUC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fan Zhong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, N., Zhong, F. Renormalization group theory for temperature-driven first-order phase transitions in scalar models. Front. Phys. 12, 126403 (2017). https://doi.org/10.1007/s11467-016-0633-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-016-0633-y

Keywords

Navigation