Skip to main content
Log in

Isolated structures in two-dimensional optical superlattice

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Overlaying commensurate optical lattices with various configurations called superlattices can lead to exotic lattice topologies and, in turn, a discovery of novel physics. In this study, by overlapping the maxima of lattices, a new isolated structure is created, while the interference of minima can generate various “sublattice” patterns. Three different kinds of primitive lattices are used to demonstrate isolated square, triangular, and hexagonal “sublattice” structures in a two-dimensional optical superlattice, the patterns of which can be manipulated dynamically by tuning the polarization, frequency, and intensity of laser beams. In addition, we propose the method of altering the relative phase to adjust the tunneling amplitudes in “sublattices”. Our configurations provide unique opportunities to study particle entanglement in “lattices” formed by intersecting wells and to implement special quantum logic gates in exotic lattice geometries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. M. Georgescu, S. Ashhab, and F. Nori, Quantum simulation, Rev. Mod. Phys. 86(1), 153 (2004)

    Article  ADS  Google Scholar 

  2. T. Calarco, U. Dorner, P. S. Julienne, C. J. Williams, and P. Zoller, Quantum computations with atoms in optical lattices: Marker qubits and molecular interactions, Phys. Rev. A 70(1), 012306 (2004)

    Article  ADS  Google Scholar 

  3. L. Niu, D. Hu, S. Jin, X. Dong, X. Chen, and X. Zhou, Excitation of atoms in an optical lattice driven by polychromatic amplitude modulation, Opt. Express 23(8), 10064 (2015)

    Article  ADS  Google Scholar 

  4. D. Hu, L. Niu, B. Yang, X. Chen, B. Wu, H. Xiong, and X. Zhou, Long-time nonlinear dynamical evolution for P-band ultracold atoms in an optical lattice, Phys. Rev. A 92(4), 043614 (2015)

    Article  ADS  Google Scholar 

  5. M. Greiner, O. Mandel, T. Esslinger, T. W. Hansch, and I. Bloch, Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms, Nature 415(6867), 39 (2002)

    Article  ADS  Google Scholar 

  6. C. Becker, P. Soltan-Panahi, J. Kronjäger, S. Dörscher, K. Bongs, and K. Sengstock, Ultracold quantum gases in triangular optical lattices, New J. Phys. 12(6), 065025 (2010)

    Article  ADS  Google Scholar 

  7. J. Sebby-Strabley, M. Anderlini, P. S. Jessen, and J. V. Porto, Lattice of double wells for manipulating pairs of cold atoms, Phys. Rev. A 73(3), 033605 (2006)

    Article  ADS  Google Scholar 

  8. L. Santos, M. A. Baranov, J. I. Cirac, H. U. Everts, H. Fehrmann, and M. Lewenstein, Atomic quantum gases in Kagomé lattices, Phys. Rev. Lett. 93(3), 030601 (2004)

    Article  ADS  Google Scholar 

  9. G. B. Jo, J. Guzman, C. K. Thomas, P. Hosur, A. Vishwanath, and D. M. Stamper-Kurn, Ultracold atoms in a tunable optical Kagome lattice, Phys. Rev. Lett. 108(4), 045305 (2012)

    Article  ADS  Google Scholar 

  10. J. K. Pachos and P. L. Knight, Quantum computation with a one-dimensional optical lattice, Phys. Rev. Lett. 91(10), 107902 (2003)

    Article  ADS  Google Scholar 

  11. G. K. Brennen, C. M. Caves, P. S. Jessen, and I. H. Deutsch, Quantum logic gates in optical lattices, Phys. Rev. Lett. 82(5), 1060 (1999)

    Article  ADS  Google Scholar 

  12. L. Jiang, A. M. Rey, O. Romero-Isart, J. J. Garca- Ripoll, A. Sanpera, and M. D. Lukin, Preparation of decoherence-free cluster states with optical superlattices, Phys. Rev. A 79(2), 022309 (2009)

    Article  ADS  Google Scholar 

  13. K. Nemoto, C. A. Holmes, G. J. Milburn, and W. J. Munro, Quantum dynamics of three coupled atomic Bose–Einstein condensates, Phys. Rev. A 63(1), 013604 (2000)

    Article  ADS  Google Scholar 

  14. M. Hiller, T. Kottos, and T. Geisel, Complexity in parametric Bose–Hubbard Hamiltonians and structural analysis of eigenstates, Phys. Rev. A 73, 061604(R) (2006)

    Article  ADS  Google Scholar 

  15. A. R. Kolovsky, Semiclassical quantization of the Bogoliubov spectrum, Phys. Rev. Lett. 99(2), 020401 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. R. Franzosi and V. Penna, Self-trapping mechanisms in the dynamics of three coupled Bose–Einstein condensates, Phys. Rev. A 65(1), 013601 (2001)

    Article  ADS  Google Scholar 

  17. P. Hsieh, C. Chung, J. McMillan, M. Tsai, M. Lu, N. Panoiu, and C. W. Wong, Photon transport enhanced by transverse Anderson localization in disordered superlattices, Nat. Phys. 11(3), 268 (2015)

    Article  Google Scholar 

  18. M. Kunitski, S. Zeller, J. Voigtsberger, A. Kalinin, L. P. H. Schmidt, M. Schöffler, A. Czasch, W. Schöllkopf, R. E. Grisenti, T. Jahnke, D. Blume, and R. Dorner, Observation of the Efimov state of the helium trimer, Science 348(6234), 551 (2015)

    Article  ADS  Google Scholar 

  19. X. Zhou, X. Xu, X. Chen, and J. Chen, Magic wavelengths for terahertz clock transitions, Phys. Rev. A 81(1), 012115 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  20. X. Xu, B. Qing, X. Z. Chen, and X. J. Zhou, A simplified method for calculating the ac Stark shift of hyperfine levels of alkali-metal atoms, Phys. Lett. A 379(20–21), 1347 (2015)

    Article  ADS  Google Scholar 

  21. P. Soltan-Panahi, J. Struck, P. Hauke, A. Bick, W. Plenkers, G. Meineke, C. Becker, P. Windpassinger, M. Lewenstein, and K. Sengstock, Multi-component quantum gases in spin-dependent hexagonal lattices, Nat. Phys. 7(5), 434 (2011)

    Article  Google Scholar 

  22. A. S. Parkins and D. F. Walls, The physics of trapped dilute-gas Bose–Einstein condensates, Phys. Rep. 303(1), 1 (1998)

    Article  ADS  Google Scholar 

  23. F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, Theory of Bose–Einstein condensation in trapped gases, Rev. Mod. Phys. 71(3), 463 (1999)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Ji Zhou.

Additional information

arXiv: 1610.07896.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, XH., Yang, BG., Xu, X. et al. Isolated structures in two-dimensional optical superlattice. Front. Phys. 12, 123201 (2017). https://doi.org/10.1007/s11467-016-0626-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-016-0626-x

Keywords

Navigation