Skip to main content

Advertisement

SpringerLink
  • Frontiers of Physics
  • Journal Aims and Scope
  • Submit to this journal
Survey of plasmonic gaps tuned at sub-nanometer scale in self-assembled arrays
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Design and applications of lattice plasmon resonances

09 August 2018

Bharath Bangalore Rajeeva, Linhan Lin & Yuebing Zheng

Patterned arrays of assembled nanoparticles prepared by interfacial assembly and femtosecond laser fabrication

21 December 2019

Chengpeng Jiang, Daiki Oshima, … Takeshi Kato

Tunable Plasmonic Resonances in Hexagonally Ordered Gold Nanostructure Arrays with Increasing Interstice Size

24 January 2020

Brindhu Malani S & P. Viswanath

Au nanoring arrays with tunable morphological features and plasmonic resonances

20 March 2021

Shilin Mu, Hongxu Chen, … Bai Yang

Morphology dependent optical response tuning in planar square-shaped array of sodium nanoparticles

24 September 2018

Junais Habeeb Mokkath

Thickness control of the silica shell: a way to tune the plasmonic properties of isolated and assembled gold nanorods

19 January 2022

Angela Candreva, Wiktor Lewandowski & Massimo La Deda

Enhanced Optical Forces and Tunable LSPR of Ag Triangular Nanoplates for Plasmonic Tweezers

05 October 2021

Pengxue Jia, Hongyan Shi, … Xiudong Sun

Controlled growth of plasmonic heterostructures and their applications

05 March 2020

Yao Zhong, Song Ma, … Qu-Quan Wang

Nanoscale Self-Assembly Using Ion and Electron Beam Techniques: A Rapid Review

29 December 2020

Chunhui Dai, Kriti Agarwal & Jeong-Hyun Cho

Download PDF

Associated Content

Part of a collection:

Frontiers of Plasmonics

  • Review Article
  • Open Access
  • Published: 01 April 2016

Survey of plasmonic gaps tuned at sub-nanometer scale in self-assembled arrays

  • Li-Hua Qian1,2,
  • Li-Zhi Yi1,
  • Gui-Sheng Wang1,
  • Chao Zhang1,2 &
  • …
  • Song-Liu Yuan1 

Frontiers of Physics volume 11, Article number: 115204 (2016) Cite this article

  • 900 Accesses

  • 1 Citations

  • Metrics details

Abstract

Creating nanoscale and sub-nanometer gaps between noble metal nanoparticles is critical for the applications of plasmonics and nanophotonics. To realize simultaneous attainments of both the optical spectrum and the gap size, the ability to tune these nanoscale gaps at the sub-nanometer scale is particularly desirable. Many nanofabrication methodologies, including electron beam lithography, self-assembly, and focused ion beams, have been tested for creating nanoscale gaps that can deliver significant field enhancement. Here, we survey recent progress in both the reliable creation of nanoscale gaps in nanoparticle arrays using self-assemblies and in the in-situ tuning techniques at the sub-nanometer scale. Precisely tunable gaps, as we expect, will be good candidates for future investigations of surface-enhanced Raman scattering, non-linear optics, and quantum plasmonics.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. C. B. Azzoni, D. D. I. Martino, V. Marchesi, B. Messiga, and M. P. Riccardi, Colour attributes of medieval window panes: Electron paramagnetic resonance and probe microanalyses on stained glass windows from Pavia-Carthusian monastery, Archaeometry 47(2), 381 (2005)

    Article  Google Scholar 

  2. S. A. Maier and H. A. Atwater, Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures, J. Appl. Phys. 98(1), 011101 (2005)

    Article  ADS  Google Scholar 

  3. G. Mie, Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen, Ann. Phys. 330(3), 377 (1908)

    MATH  Google Scholar 

  4. N. J. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, Plasmons in strongly coupled metallic nanostructures, Chem. Rev. 111(6), 3913 (2011)

    Article  Google Scholar 

  5. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Berlin: Springer, 1988

    Google Scholar 

  6. L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films, Langmuir 14(19), 5636 (1998)

    Article  Google Scholar 

  7. B. Auguié and W. L. Barnes, Collective resonances in gold nanoparticle arrays, Phys. Rev. Lett. 101(14), 143902 (2008)

    Article  ADS  Google Scholar 

  8. T. J. Yim, Y. Wang, and X. Zhang, Synthesis of a gold nanoparticle dimer plasmonic resonator through two-phasemediated functionalization, Nanotechnology 19(43), 435605 (2008)

    Article  ADS  Google Scholar 

  9. D. S. Kim, J. Heo, S. H. Ahn, S. W. Han, W. S. Yun, and Z. H. Kim, Real-space mapping of the strongly coupled plasmons of nanoparticle dimers, Nano Lett. 9(10), 3619 (2009)

    Article  ADS  Google Scholar 

  10. S. Shen, L. Meng, Y. Zhang, J. Han, Z. Ma, S. Hu, Y. He, J. Li, B. Ren, T. M. Shih, Z. Wang, Z. Yang, and Z. Tian, Plasmon-enhanced second-harmonic generation nanorulers with ultrahigh sensitivities, Nano Lett. 15(10), 6716 (2015)

    Article  ADS  Google Scholar 

  11. Z. Q. Tian and B. Ren, Adsorption and reaction at electrochemical interfaces as probed by surface-enhanced Raman spectroscopy, Annu. Rev. Phys. Chem. 55(1), 197 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  12. E. C. Le Ru and P. G. Etchegoin, Single-molecule surfaceenhanced Raman spectroscopy, Annu. Rev. Phys. Chem. 63(1), 65 (2012)

    Article  ADS  Google Scholar 

  13. L. Li, T. Li, S. M. Wang, and S. N. Zhu, Collimated plasmon beam: Nondiffracting versus linearly focused, Phys. Rev. Lett. 110(4), 046807 (2013)

    Article  ADS  Google Scholar 

  14. Y. J. Lu, J. Kim, H. Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C. Y. Wang, M. Y. Lu, B. H. Li, X. Qiu, W. H. Chang, L. J. Chen, G. Shvets, C. K. Shih, and S. Gwo, Plasmonic nanolaser using epitaxially grown silver film, Science 337(6093), 450 (2012)

    Article  ADS  Google Scholar 

  15. A. V. Krasavin and A. V. Zayats, Photonic signal processing on electronic scales: Electro-optical field-effect nanoplasmonic modulator, Phys. Rev. Lett. 109(5), 053901 (2012)

    Article  ADS  Google Scholar 

  16. M. L. Brongersma and V. M. Shalaev, The case for plasmonics, Science 328(5977), 440 (2010)

    Article  ADS  Google Scholar 

  17. S. A. Maier, Plasmonics: Fundamentals and Applications, New York: Springer, 2007

    Google Scholar 

  18. W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, A plasmonic Fano switch, Nano Lett. 12(9), 4977 (2012)

    Article  ADS  Google Scholar 

  19. A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A.Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, Plasmonic nanorod metamaterials for biosensing, Nat. Mater. 8(11), 867 (2009)

    Article  ADS  Google Scholar 

  20. H. Wang, C. S. Levin, and N. J. Halas, Nanosphere arrays with controlled sub-10-nm gaps as surface-enhanced Raman spectroscopy substrates, J. Am. Chem. Soc. 127(43), 14992 (2005)

    Article  Google Scholar 

  21. Z. Dong, M. Asbahi, J. Lin, D. Zhu, Y. M. Wang, K. Hippalgaonkar, H. S. Chu, W. P. Goh, F. Wang, Z. Huang, and J. K. W. Yang, Second-harmonic generation from sub-5 nm gaps by directed self-assembly of nanoparticles onto template-stripped gold substrates, Nano Lett. 15(9), 5976 (2015)

    Article  ADS  Google Scholar 

  22. J. Y. Park, L. R. Baker, and G. A. Somorjai, Role of hot electrons and metal-oxide interfaces in surface chemistry and catalytic reactions, Chem. Rev. 115(8), 2781 (2015)

    Article  Google Scholar 

  23. R. Esteban, A. Zugarramurdi, P. Zhang, P. Nordlander, F. J. Garcia-Vidal, A. G. Borisov, and J. Aizpurua, A classical treatment of optical tunneling in plasmonic gaps: Extending the quantum corrected model to practical situations, Faraday Discuss. 178, 151 (2015)

    Article  Google Scholar 

  24. C. Y. Li, J. C. Dong, X. Jin, S. Chen, R. Panneerselvam, A. V. Rudnev, Z. L. Yang, J. F. Li, T. Wandlowski, and Z. Q. Tian, In situ monitoring of electrooxidation processes at gold single crystal surfaces using shell-isolated nanoparticleenhanced Raman spectroscopy, J. Am. Chem. Soc. 137(24), 7648 (2015)

    Article  Google Scholar 

  25. L. M. Tong, H. X. Xu, and M. Käll, Nanogaps for SERS applications, MRS Bull. 39(2), 193 (2014)

    Article  Google Scholar 

  26. K. D. Alexander, S. P. Zhang, A. R. Hight Walker, H. X. Xu, and R. Lopez, Relationship between length and surface-enhanced raman spectroscopy signal strength in metal nanoparticle chains: Ideal models versus nanofabrication, J. Nanotechnol. 2012, 840245 (2012)

    Google Scholar 

  27. K. D. Alexander, K. Skinner, S. Zhang, H. Wei, and R. Lopez, Tunable SERS in gold nanorod dimers through strain control on an elastomeric substrate, Nano Lett. 10(11), 4488 (2010)

    Article  ADS  Google Scholar 

  28. F. Huang and J. J. Baumberg, Actively tuned plasmons on elastomerically driven Au nanoparticle dimers, Nano Lett. 10(5), 1787 (2010)

    Article  ADS  Google Scholar 

  29. P. Dombi, A. Hörl, P. Rácz, I. Márton, A. Trügler, J. R. Krenn, and U. Hohenester, Ultrafast strong-field photoemission from plasmonic nanoparticles, Nano Lett. 13(2), 674 (2013)

    Article  ADS  Google Scholar 

  30. R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, Bridging quantum and classical plasmonics with a quantumcorrected model, Nat. Commun. 3, 825 (2012)

    Article  ADS  Google Scholar 

  31. J. H. Yoon, Y. Zhou, M. G. Blaber, G. C. Schatz, and S. Yoon, Surface plasmon coupling of compositionally heterogeneous core-satellite nanoassemblies, J. Phys. Chem. Lett. 4(9), 1371 (2013)

    Article  Google Scholar 

  32. J. H. Yoon, J. Lim, and S. Yoon, Controlled assembly and plasmonic properties of asymmetric core-satellite nanoassemblies, ACS Nano 6(8), 7199 (2012)

    Article  Google Scholar 

  33. S. Aksu, M. Huang, A. Artar, A. A. Yanik, S. Selvarasah, M. R. Dokmeci, and H. Altug, Flexible plasmonics on unconventional and nonplanar substrates, Adv. Mater. 23(38), 4422 (2011)

    Article  Google Scholar 

  34. L. Lermusiaux, V. Maillard, and S. Bidault, Widefield spectral monitoring of nanometer distance changes in DNAtemplated plasmon rulers, ACS Nano 9(1), 978 (2015)

    Article  Google Scholar 

  35. B. A. Grzybowski, C. E. Wilmer, J. Kim, K. P. Browne, and K. J. M. Bishop, Self-assembly: From crystals to cells, Soft Matter 5(6), 1110 (2009)

    Article  ADS  Google Scholar 

  36. Z. M. Zhu, H. F. Meng, W. J. Liu, X. F. Liu, J. X. Gong, X. H. Qiu, L. Jiang, D. Wang, and Z. Y. Tang, Superstructures and SERS properties of gold nanocrystals with different shapes, Angew. Chem. Int. Ed. 50(7), 1593 (2011)

    Article  Google Scholar 

  37. W. Cheng, M. J. Campolongo, J. J. Cha, S. J. Tan, C. C. Umbach, D. A.Muller, and D. Luo, Free-standing nanoparticle superlattice sheets controlled by DNA, Nat. Mater. 8(6), 519 (2009)

    Article  ADS  Google Scholar 

  38. M. P. Cecchini, V. A. Turek, J. Paget, A. A. Kornyshev, and J. B. Edel, Self-assembled nanoparticle arrays for multiphase trace analyte detection, Nat. Mater. 12(2), 165 (2013)

    Article  ADS  Google Scholar 

  39. L. Shao, C. Fang, H. Chen, Y. C. Man, J. Wang, and H. Q. Lin, Distinct plasmonic manifestation on gold nanorods induced by the spatial perturbation of small gold nanospheres, Nano Lett. 12(3), 1424 (2012)

    Article  ADS  Google Scholar 

  40. Z. Yang, S. Chen, P. Fang, B. Ren, H. H. Girault, and Z. Tian, LSPR properties of metal nanoparticles adsorbed at a liquid-liquid interface, Phys. Chem. Chem. Phys. 15(15), 5374 (2013)

    Article  Google Scholar 

  41. H. Liu, Z. Yang, L. Meng, Y. Sun, J. Wang, L. Yang, J. Liu, and Z. Tian, Three-dimensional and time-ordered surfaceenhanced Raman scattering hotspot matrix, J. Am. Chem. Soc. 136(14), 5332 (2014)

    Article  Google Scholar 

  42. J. Chen, B. Shen, G. Qin, X. Hu, L. Qian, Z. Wang, S. Li, Y. Ren, and L. Zuo, Fabrication of large-area, highenhancement SERS substrates with tunable interparticle spacing and application in identifying microorganisms at the single cell level, J. Phys. Chem. C 116(5), 3320 (2012)

    Article  Google Scholar 

  43. Z. Dai, Y. Li, G. Duan, L. Jia, and W. Cai, Phase diagram, design of monolayer binary colloidal crystals, and their fabrication based on ethanol-assisted self-assembly at the air/water interface, ACS Nano 6(8), 6706 (2012)

    Google Scholar 

  44. R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten, Capillary flow as the cause of ring stains from dried liquid drops, Nature 389(6653), 827 (1997)

    Article  ADS  Google Scholar 

  45. A. S. Dimitrov and K. Nagayama, Continuous convective assembling of fine particles into two-dimensional arrays on solid surfaces, Langmuir 12(5), 1303 (1996)

    Article  Google Scholar 

  46. M. H. Kim, S. H. Im, and O. O. Park, Rapid fabrication of two- and three-dimensional colloidal crystal films via confined convective assembly, Adv. Funct. Mater. 15(8), 1329 (2005)

    Article  Google Scholar 

  47. S. W. Hong, M. Byun, and Z. Q. Lin, Robust self-assembly of highly ordered complex structures by controlled evaporation of confined microfluids, Angew. Chem. Int. Ed. 48(3), 512 (2009)

    Article  Google Scholar 

  48. L. H. Qian and R. Mookherjee, Convective assembly of linear gold nanoparticle arrays at the micron scale for surface enhanced Raman scattering, Nano Res. 4(11), 1117 (2011)

    Article  Google Scholar 

  49. L. H. Qian, S. J. Zhai, Y. T. Jiang, and B. Das, Nanoscale convection assisted self-assembly of nanoparticle monolayer, J. Mater. Chem. 22(11), 4932 (2012)

    Article  Google Scholar 

  50. C. Zhang, J. Li, S. Yang, W. Jiao, S. Xiao, M. Zou, S. Yuan, F. Xiao, S. Wang, and L. Qian, Closely packed nanoparticle monolayer as a strain gauge fabricated by convective assembly at a confined angle, Nano Res. 7(6), 824 (2014)

    Article  Google Scholar 

  51. L. Z. Yi, W. H. Jiao, K. Wu, L. H. Qian, X. X. Yu, Q. Xia, K. M. Mao, S. L. Yuan, S. Wang, and Y. T. Jiang, Nanoparticle monolayer-based flexible strain gauge with ultrafast dynamic response for acoustic vibration detection, Nano Res. 8(9), 2978 (2015)

    Article  Google Scholar 

  52. J. Zhang, Y. Li, X. Zhang, and B. Yang, Colloidal selfassembly meets nanofabrication: from two-dimensional colloidal crystals to nanostructure arrays, Adv. Mater. 22(38), 4249 (2010)

    Article  Google Scholar 

  53. M. Asbahi, S. Mehraeen, K. T. P. Lim, F. Wang, J. Cao, M. C. Tan, and J. K. W. Yang, Template-induced structure transition in sub-10 nm self-assembling nanoparticles, Nano Lett. 14(5), 2642 (2014)

    Article  ADS  Google Scholar 

  54. C. Jin, M. A. McLachlan, D. W. McComb, R. M. De La Rue, and N. P. Johnson, Template-assisted growth of nominally cubic (100)-oriented three-dimensional crack-free photonic crystals, Nano Lett. 5(12), 2646 (2005)

    Article  ADS  Google Scholar 

  55. C. J. Jin, Z. Y. Li, M. A. McLachlan, D. W. McComb, R. M. De La Rue, and N. P. Johnson, Optical properties of tetragonal photonic crystal synthesized via template-assisted selfassembly, J. Appl. Phys. 99(11), 116109 (2006)

    Article  ADS  Google Scholar 

  56. Y. Cui, M. T. Björk, J. A. Liddle, C. Sönnichsen, B. Boussert, and A. P. Alivisatos, Integration of colloidal nanocrystals into lithographically patterned devices, Nano Lett. 4(6), 1093 (2004)

    Article  ADS  Google Scholar 

  57. M. Asbahi, S. Mehraeen, F. Wang, N. Yakovlev, K. S. L. Chong, J. Cao, M. C. Tan, and J. K. W. Yang, Large area directed self-assembly of sub-10 nm particles with single particle positioning resolution, Nano Lett. 15(9), 6066 (2015)

    Article  ADS  Google Scholar 

  58. A. Pescaglini, A. O’Riordan, A. J. Quinn, and D. Iacopino, Controlled assembly of Au nanorods into 1D architectures by electric field assisted deposition, J. Mater. Chem. C 2(33), 6810 (2014)

    Article  Google Scholar 

  59. H. Cha, J. H. Yoon, and S. Yoon, Probing quantum plasmon coupling using gold nanoparticle dimers with tunable interparticle distances down to the subnanometer range, ACS Nano 8(8), 8554 (2014)

    Article  Google Scholar 

  60. S. Malynych and G. Chumanov, Light-induced coherent interactions between silver nanoparticles in two-dimensional arrays, J. Am. Chem. Soc. 125(10), 2896 (2003)

    Article  Google Scholar 

  61. R. M. Cole, S. Mahajan, and J. J. Baumberg, Stretchable metal-elastomer nanovoids for tunable plasmons, Appl. Phys. Lett. 95(15), 154103 (2009)

    Article  ADS  Google Scholar 

  62. Y. Cui, J. Zhou, V. A. Tamma, and W. Park, Dynamic tuning and symmetry lowering of Fano resonance in plasmonic nanostructure, ACS Nano 6(3), 2385 (2012)

    Article  Google Scholar 

  63. S. Olcum, A. Kocabas, G. Ertas, A. Atalar, and A. Aydinli, Tunable surface plasmon resonance on an elastomeric substrate, Opt. Express 17(10), 8542 (2009)

    Article  ADS  Google Scholar 

  64. X. Han, Y. Liu, and Y. Yin, Colorimetric stress memory sensor based on disassembly of gold nanoparticle chains, Nano Lett. 14(5), 2466 (2014)

    Article  ADS  Google Scholar 

  65. K. D. Alexander, K. Skinner, S. Zhang, H. Wei, and R. Lopez, Tunable SERS in gold nanorod dimers through strain control on an elastomeric substrate, Nano Lett. 10(11), 4488 (2010)

    Article  ADS  Google Scholar 

  66. W. Jiao, L. Yi, C. Zhang, K. Wu, J. Li, L. Qian, S. Wang, Y. Jiang, B. Das, and S. Yuan, Electrical conduction of nanoparticle monolayer for accurate tracking of mechanical stimulus in finger touch sensing, Nanoscale 6(22), 13809 (2014)

    Article  ADS  Google Scholar 

  67. J. H. Tian, B. Liu, X. Li, Z. L. Yang, B. Ren, S. T. Wu, N. Tao, and Z. Q. Tian, Study of molecular junctions with a combined surface-enhanced Raman and mechanically controllable break junction method, J. Am. Chem. Soc. 128(46), 14748 (2006)

    Article  Google Scholar 

  68. L. Z. Yi, W. H. Jiao, C. M. Zhu, K. Wu, C. Zhang, L. H. Qian, S. Wang, Y. T. Jiang, and S. L. Yuan, Nano Res. (2016) (in press)

    Google Scholar 

  69. K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, Revealing the quantum regime in tunnelling plasmonics, Nature 491(7425), 574 (2012)

    Article  ADS  Google Scholar 

  70. H. Duan, A. I. Fernández-Domínguez, M. Bosman, S. A. Maier, and J. K. W. Yang, Nanoplasmonics: Classical down to the nanometer scale, Nano Lett. 12(3), 1683 (2012)

    Article  ADS  Google Scholar 

  71. S. F. Tan, L. Wu, J. K. W. Yang, P. Bai, M. Bosman, and C. A. Nijhuis, Quantum plasmon resonances controlled by molecular tunnel junctions, Science 343(6178), 1496 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  72. S. K. Earl, T. D. James, T. J. Davis, J. C. McCallum, R. E. Marvel, J. C. Haglund, and A. Roberts, Tunable optical antennas enabled by the phase transition in vanadium dioxide, Opt. Express 21(22), 27503 (2013)

    Article  ADS  Google Scholar 

  73. L. P. Xia, Z. Yang, S. Y. Yin, W. R. Guo, J. L. Du, and C. L. Du, Hole arrayed metal-insulator-metal structure for surface enhanced Raman scattering by self-assembling polystyrene spheres, Front. Phys. 9(1), 68 (2014)

    Article  Google Scholar 

  74. Z. L. Zhang, L. Chen, S. X. Sheng, M. T. Sun, H. R. Zheng, K. Q. Chen, and H. X. Xu, High-vacuum tip enhanced Raman spectroscopy, Front. Phys. 9(1), 24 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. School of Physics, Huazhong University of Science and Technology, Wuhan, 430074, China

    Li-Hua Qian, Li-Zhi Yi, Gui-Sheng Wang, Chao Zhang & Song-Liu Yuan

  2. Flexible Electronics Center, Huazhong University of Science and Technology, Wuhan, 430074, China

    Li-Hua Qian & Chao Zhang

Authors
  1. Li-Hua Qian
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Li-Zhi Yi
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Gui-Sheng Wang
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Chao Zhang
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Song-Liu Yuan
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Li-Hua Qian.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Qian, LH., Yi, LZ., Wang, GS. et al. Survey of plasmonic gaps tuned at sub-nanometer scale in self-assembled arrays. Front. Phys. 11, 115204 (2016). https://doi.org/10.1007/s11467-016-0567-4

Download citation

  • Received: 18 December 2015

  • Accepted: 25 January 2016

  • Published: 01 April 2016

  • DOI: https://doi.org/10.1007/s11467-016-0567-4

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • surface plasmon
  • tunable
  • plasmonic gap
  • quantum plasmon
  • surface-enhanced Raman scattering
  • self-assembly
  • nanoparticle array
Download PDF

Working on a manuscript?

Avoid the common mistakes

Associated Content

Part of a collection:

Frontiers of Plasmonics

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.