Skip to main content

Advertisement

SpringerLink
  • Frontiers of Physics
  • Journal Aims and Scope
  • Submit to this journal
Properties of spin–orbit-coupled Bose–Einstein condensates
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Exact Bloch States of a Spin-orbit Coupled Bose-Einstein Condensate in an Optical Lattice

06 July 2021

Chao Kong, ZhengHua Tang, … HaiMing Deng

Spin-orbital-angular-momentum-coupled quantum gases

05 December 2022

Shi-Guo Peng, Kaijun Jiang, … Lianyi He

Vortex structure in spin–orbit-coupled spin-1 Bose gases with unequal atomic mass

05 October 2022

Qiang Zhao & Hongjing Bi

Nonlinear modes in spatially confined spin–orbit-coupled Bose–Einstein condensates with repulsive nonlinearity

27 June 2020

Xiong-wei Chen, Zhi-gui Deng, … Yong-yao Li

Landau–Zener–Stückelberg–Majorana interference of a spin-orbit-coupled Bose–Einstein condensate

10 May 2021

Xin-Xin Zhang, Wen-Yuan Wang & Fu-Quan Dou

Topological excitations in rotating Bose-Einstein condensates with Rashba-Dresselhaus spin-orbit coupling in a two-dimensional optical lattice

02 December 2019

Hui Yang, Qingbo Wang, … Linghua Wen

Spin Mixing Dynamics in a Spin–Orbit Coupled Bose–Einstein Condensate

01 April 2019

Zi-Fa Yu, Ji-Ming Gao, … Ju-Kui Xue

Ultracold Fermionic Atoms in Square and Triangular Optical Lattices with Non-Abelian Gauge Fields and Out-of-Plane Zeeman Field

31 October 2018

Zlatko Koinov

Ground State Phases of Spin-Orbit Coupled Spin-1 Dipolar Bose-Einstein Condensates

30 June 2021

Qiang Zhao & Hongjing Bi

Download PDF

Associated Content

Part of a collection:

Artificial Gauge Field in Ultra-Cold Atomic Gases

  • Review Article
  • Open Access
  • Published: 09 June 2016

Properties of spin–orbit-coupled Bose–Einstein condensates

  • Yongping Zhang1,
  • Maren Elizabeth Mossman2,
  • Thomas Busch1,
  • Peter Engels2 &
  • …
  • Chuanwei Zhang3 

Frontiers of Physics volume 11, Article number: 118103 (2016) Cite this article

  • 2025 Accesses

  • 74 Citations

  • Metrics details

Abstract

The experimental and theoretical research of spin–orbit-coupled ultracold atomic gases has advanced and expanded rapidly in recent years. Here, we review some of the progress that either was pioneered by our own work, has helped to lay the foundation, or has developed new and relevant techniques. After examining the experimental accessibility of all relevant spin–orbit coupling parameters, we discuss the fundamental properties and general applications of spin–orbit-coupled Bose–Einstein condensates (BECs) over a wide range of physical situations. For the harmonically trapped case, we show that the ground state phase transition is a Dicke-type process and that spin–orbit-coupled BECs provide a unique platform to simulate and study the Dicke model and Dicke phase transitions. For a homogeneous BEC, we discuss the collective excitations, which have been observed experimentally using Bragg spectroscopy. They feature a roton-like minimum, the softening of which provides a potential mechanism to understand the ground state phase transition. On the other hand, if the collective dynamics are excited by a sudden quenching of the spin–orbit coupling parameters, we show that the resulting collective dynamics can be related to the famous Zitterbewegung in the relativistic realm. Finally, we discuss the case of a BEC loaded into a periodic optical potential. Here, the spin–orbit coupling generates isolated flat bands within the lowest Bloch bands whereas the nonlinearity of the system leads to dynamical instabilities of these Bloch waves. The experimental verification of this instability illustrates the lack of Galilean invariance in the system.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. A. L. Fetter, Rotating trapped Bose–Einstein condensates, Rev. Mod. Phys. 81(2), 647 (2009)

    Article  ADS  Google Scholar 

  2. Y. J. Lin, R. L. Compton, K. Jiménez-García, J. V. Porto, and I. B. Spielman, Synthetic magnetic fields for ultracold neutral atoms, Nature 462(7273), 628 (2009)

  3. M. Aidelsburger, M. Atala, M. Lohse, J. T. Barreiro, B. Paredes, and I. Bloch, Realization of the Hofstadter Hamiltonian with ultracold atoms in optical lattices, Phys. Rev. Lett. 111(18), 185301 (2013)

    Article  ADS  Google Scholar 

  4. H. Miyake, G. A. Siviloglou, C. J. Kennedy, W. C. Burton, and W. Ketterle, Realizing the Harper Hamiltonian with laser-assisted tunneling in optical lattices, Phys. Rev. Lett. 111(18), 185302 (2013)

    Article  ADS  Google Scholar 

  5. M. Aidelsburger, M. Atala, S. Nascimbène, S. Trotzky, Y.A. Chen, and I. Bloch, Experimental realization of strong effective magnetic fields in an optical lattice, Phys. Rev. Lett. 107(25), 255301 (2011)

    Article  ADS  Google Scholar 

  6. I. Žutic, J. Fabian, and S. Das Sarma, Spintronics: Fundamentals and applications, Rev. Mod. Phys. 76(2), 323 (2004)

    Article  ADS  Google Scholar 

  7. M. Z. Hasan and C. L. Kane, Colloquium: Topological insulators, Rev. Mod. Phys. 82(4), 3045 (2010)

    Article  ADS  Google Scholar 

  8. T. Jungwirth, J. Wunderlich, and K. Olejník, Spin Hall effect devices, Nat. Mater. 11(5), 382 (2012)

    Article  ADS  Google Scholar 

  9. Y. J. Lin, K. Jiménez-García, and I. B. Spielman, Spin–orbit-coupled Bose–Einstein condensates, Nature 471(7336), 83 (2011)

  10. J. Ruseckas, G. Juzeliunas, P. Öhberg, and M. Fleischhauer, Non-Abelian gauge potentials for ultracold atoms with degenerate dark states, Phys. Rev. Lett. 95(1), 010404 (2005)

    Article  ADS  Google Scholar 

  11. S. L. Zhu, H. Fu, C. J. Wu, S. C. Zhang, and L. M. Duan, Spin Hall effects for cold atoms in a light-induced gauge potential, Phys. Rev. Lett. 97(24), 240401 (2006)

    Article  ADS  Google Scholar 

  12. X. J. Liu, X. Liu, L. C. Kwek, and C. H. Oh, Optically induced spin-Hall effect in atoms, Phys. Rev. Lett. 98(2), 026602 (2007)

    Article  ADS  Google Scholar 

  13. T. D. Stanescu, B. Anderson, and V. Galitski, Spin–orbit coupled Bose–Einstein condensates, Phys. Rev. A 78(2), 023616 (2008)

    Article  ADS  Google Scholar 

  14. J. Larson, J. P. Martikainen, A. Collin, and E. Sjöqvist, Spin–orbit-coupled Bose–Einstein condensate in a tilted optical lattice, Phys. Rev. A 82(4), 043620 (2010)

    Article  ADS  Google Scholar 

  15. M. Merkl, A. Jacob, F. E. Zimmer, P. Öhberg, and L. Santos, Chiral confinement in quasirelativistic Bose–Einstein condensates, Phys. Rev. Lett. 104(7), 073603 (2010)

    Article  ADS  Google Scholar 

  16. R. A. Williams, L. J. LeBlanc, K. Jiménez-García, M. C. Beeler, A. R. Perry, W. D. Phillips, and I. B. Spielman, Synthetic partial waves in ultracold atomic collisions, Science 335(6066), 314 (2012)

    Article  ADS  Google Scholar 

  17. L. J. LeBlanc, M. C. Beeler, K. Jiménez-García, A. R. Perry, S. Sugawa, R. A. Williams, and I. B. Spielman, Direct observation of Zitterbewegung in a Bose–Einstein condensate, New J. Phys. 15(7), 073011 (2013)

    Article  ADS  Google Scholar 

  18. M. C. Beeler, R. A. Williams, K. Jiménez-García, L. J. LeBlanc, A. R. Perry, and I. B. Spielman, The spin Hall effect in a quantum gas, Nature 498(7453), 201 (2013)

  19. K. Jiménez-García, L. J. LeBlanc, R. A. Williams, M. C. Beeler, C. Qu, M. Gong, C. Zhang, and I. B. Spielman, Tunable spin–orbit coupling via strong driving in ultracold-atom systems, Phys. Rev. Lett. 114(12), 125301 (2015)

    Article  ADS  Google Scholar 

  20. L. W. Cheuk, A. T. Sommer, Z. Hadzibabic, T. Yefsah, W. S. Bakr, and M. W. Zwierlein, Spin-injection spectroscopy of a spin–orbit coupled Fermi gas, Phys. Rev. Lett. 109(9), 095302 (2012)

    Article  ADS  Google Scholar 

  21. C. L. Qu, C. Hamner, M. Gong, C. W. Zhang, and P. Engels, Observation of Zitterbewegung in a spin–orbit coupled Bose–Einstein condensate, Phys. Rev. A 88, 021604(R) (2013)

    Article  ADS  Google Scholar 

  22. C. Hamner, C. Qu, Y. Zhang, J. J. Chang, M. Gong, C. Zhang, and P. Engels, Dicke-type phase transition in a spin–orbit-coupled Bose–Einstein condensate, Nat. Commun. 5, 4023 (2014)

    Article  ADS  Google Scholar 

  23. M. A. Khamehchi, Y. Zhang, C. Hamner, T. Busch, and P. Engels, Measurement of collective excitations in a spin–orbit-coupled Bose–Einstein condensate, Phys. Rev. A 90(6), 063624 (2014)

    Article  ADS  Google Scholar 

  24. C. Hamner, Y. Zhang, M. A. Khamehchi, M. J. Davis, and P. Engels, Spin–orbit-coupled Bose–Einstein condensates in a one-dimensional optical lattice, Phys. Rev. Lett. 114(7), 070401 (2015)

    Article  ADS  Google Scholar 

  25. A. J. Olson, S. J. Wang, R. J. Niffenegger, C. H. Li, C. H. Greene, and Y. P. Chen, Tunable Landau–Zener transitions in a spin–orbit-coupled Bose–Einstein condensate, Phys. Rev. A 90(1), 013616 (2014)

    Article  ADS  Google Scholar 

  26. A. J. Olson, Chuan-Hsun Li, David B. Blasing, R. J. Niffenegger, and Yong P. Chen, Engineering an atominterferometer with modulated light-induced 3π spin–orbit coupling, arXiv: 1502.04722 (2015)

    Google Scholar 

  27. J. Y. Zhang, S. C. Ji, Z. Chen, L. Zhang, Z. D. Du, B. Yan, G. S. Pan, B. Zhao, Y. J. Deng, H. Zhai, S. Chen, and J. W. Pan, Collective dipole oscillations of a spin–orbit coupled Bose–Einstein condensate, Phys. Rev. Lett. 109(11), 115301 (2012)

    Article  ADS  Google Scholar 

  28. S. C. Ji, J. Y. Zhang, L. Zhang, Z. D. Du, W. Zheng, Y. J. Deng, H. Zhai, S. Chen, and J. W. Pan, Experimental determination of the finite-temperature phase diagram of a spin–orbit coupled Bose gas, Nat. Phys. 10(4), 314 (2014)

    Article  Google Scholar 

  29. S. C. Ji, L. Zhang, X. T. Xu, Z. Wu, Y. Deng, S. Chen, and J. W. Pan, Softening of roton and phonon modes in a Bose-Einstein condensate with spin–orbit coupling, Phys. Rev. Lett. 114(10), 105301 (2015)

    Article  ADS  Google Scholar 

  30. Z. Wu, L. Zhang, W. Sun, X. T. Xu, B. Z. Wang, S. C. Ji, Y. Deng, S. Chen, X. J. Liu, and J. W. Pan, Realization of two-dimensional spin–orbit coupling for Bose–Einstein condensates, arXiv: 1511.08170 (2015)

    Google Scholar 

  31. Z. K. Fu, P. J. Wang, S. J. Chai, L. H. Huang, and J. Zhang, Bose–Einstein condensate in a light-induced vector gauge potential using 1064-nm optical-dipole-trap lasers, Phys. Rev. A 84, 043609 (2011)

    Article  ADS  Google Scholar 

  32. P. Wang, Z. Q. Yu, Z. Fu, J. Miao, L. Huang, S. Chai, H. Zhai, and J. Zhang, Spin–orbit coupled degenerate Fermi gases, Phys. Rev. Lett. 109(9), 095301 (2012)

    Article  ADS  Google Scholar 

  33. Z. Fu, L. Huang, Z. Meng, P. Wang, X. J. Liu, H. Pu, H. Hu, and J. Zhang, Radio-frequency spectroscopy of a strongly interacting spin–orbit-coupled Fermi gas, Phys. Rev. A 87(5), 053619 (2013)

    Article  ADS  Google Scholar 

  34. Z. Fu, L. Huang, Z. Meng, P. Wang, L. Zhang, S. Zhang, H. Zhai, P. Zhang, and J. Zhang, Production of Feshbach molecules induced by spin–orbit coupling in Fermi gases, Nat. Phys. 10(2), 110 (2013)

    Article  Google Scholar 

  35. L. Huang, Z. Meng, P. Wang, P. Peng, S.L. Zhang, L. Chen, D. Li, Q. Zhou, and J. Zhang, Experimental realization of a two-dimensional synthetic spin–orbit coupling in ultracold Fermi gases, Nat. Phys. (2016), arXiv: 1506.02861

    Google Scholar 

  36. Z. Meng, L. Huang, P. Peng, D. Li, L. Chen, Y. Xu, C. Zhang, P. Wang, and J. Zhang, Experimental observation of topological band gap opening in ultracold Fermi gases with two-dimensional spin–orbit coupling, arXiv: 1511.08492 (2015)

    Google Scholar 

  37. X. Luo, L. Wu, J. Chen, Q. Guan, K. Gao, Z.F. Xu, L. You, and R. Wang, Tunable spin–orbit coupling synthesized with a modulating gradient magnetic field, Sci. Rep. 6, 18983 (2016), arXiv: 1502.07091

    Article  ADS  Google Scholar 

  38. Y. Xu and C. Zhang, Topological Fulde–Ferrell superfluids of a spin–orbit coupled Fermi gas, Int. J. Mod. Phys. B 29(01), 1530001 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  39. Y. Li, G. I. Martone, and S. Stringari, Bose-Einstein condensation with spin–orbit coupling, Annual Review of Cold Atoms and Molecules 3, 201 (2015)

    ADS  Google Scholar 

  40. C. Wang, C. Gao, C. M. Jian, and H. Zhai, Spin–orbit coupled spinor Bose–Einstein condensates, Phys. Rev. Lett. 105(16), 160403 (2010)

    Article  ADS  Google Scholar 

  41. T. L. Ho and S. Zhang, Bose–Einstein condensates with spin–orbit interaction, Phys. Rev. Lett. 107(15), 150403 (2011)

    Article  ADS  Google Scholar 

  42. C. J. Wu, I. Mondragon-Shem, and X. F. Zhou, Unconventional Bose–Einstein condensations from spin–orbit coupling, Chin. Phys. Lett. 28(9), 097102 (2011)

    Article  ADS  Google Scholar 

  43. Y. Li, L. P. Pitaevskii, and S. Stringari, Quantum tricriticality and phase transitions in spin–orbit coupled Bose–Einstein condensates, Phys. Rev. Lett. 108(22), 225301 (2012)

    Article  ADS  Google Scholar 

  44. Q. Zhu, C. Zhang, and B. Wu, Exotic superfluidity in spin–orbit coupled Bose–Einstein condensates, Europhys. Lett. 100(5), 50003 (2012)

    Article  ADS  Google Scholar 

  45. L. Wen, Q. Sun, H. Q. Wang, A. C. Ji, and W. M. Liu, Ground state of spin-1 Bose–Einstein condensates with spin–orbit coupling in a Zeeman field, Phys. Rev. A 86, 043602 (2012)

    Article  ADS  Google Scholar 

  46. X. L. Cui and Q. Zhou, Enhancement of condensate depletion due to spin–orbit coupling, Phys. Rev. A 87, 031604(R) (2013)

    Article  ADS  Google Scholar 

  47. Y. Li, G. I. Martone, L. P. Pitaevskii, and S. Stringari, Superstripes and the excitation spectrum of a spin–orbit-coupled Bose–Einstein condensate, Phys. Rev. Lett. 110(23), 235302 (2013)

    Article  ADS  Google Scholar 

  48. G. I. Martone, Y. Li, and S. Stringari, Approach for making visible and stable stripes in a spin–orbit-coupled Bose–Einstein superfluid, Phys. Rev. A 90, 041604(R) (2014)

  49. Z. Lan and P. Öhberg, Raman-dressed spin-1 spin–orbitcoupled quantum gas, Phys. Rev. A 89, 023630 (2014)

    Article  ADS  Google Scholar 

  50. S. Sinha, R. Nath, and L. Santos, Trapped twodimensional condensates with synthetic spin–orbit coupling, Phys. Rev. Lett. 107(27), 270401 (2011)

    Article  Google Scholar 

  51. H. Hu, B. Ramachandhran, H. Pu, and X. J. Liu, Spin–orbit coupled weakly interacting Bose–Einstein condensates in harmonic traps, Phys. Rev. Lett. 108(1), 010402 (2012)

    Article  ADS  Google Scholar 

  52. Y. Zhang, L. Mao, and C. Zhang, Mean-field dynamics of spin–orbit coupled Bose–Einstein condensates, Phys. Rev. Lett. 108(3), 035302 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  53. S. Gautam and S. K. Adhikari, Phase separation in a spin–orbit-coupled Bose–Einstein condensate, Phys. Rev. A 90(4), 043619 (2014)

    Article  ADS  Google Scholar 

  54. O. V. Marchukov, A. G. Volosniev, D. V. Fedorov, A. S. Jensen, and N. T. Zinner, Statistical properties of spectra in harmonically trapped spin–orbit coupled systems, J. Phys. At. Mol. Opt. Phys. 47(19), 195303 (2014)

    Article  ADS  Google Scholar 

  55. W. S. Cole, S. Zhang, A. Paramekanti, and N. Trivedi, Bose–Hubbard models with synthetic spin–orbit coupling: Mott insulators, spin textures, and superfluidity, Phys. Rev. Lett. 109(8), 085302 (2012)

    Article  Google Scholar 

  56. Z. Cai, X. Zhou, and C. Wu, Magnetic phases of bosons with synthetic spin–orbit coupling in optical lattices, Phys. Rev. A 85, 061605(R) (2012)

    Article  ADS  Google Scholar 

  57. M. J. Edmonds, J. Otterbach, R. G. Unanyan, M. Fleischhauer, M. Titov, and P. Öhberg, From Anderson to anomalous localization in cold atomic gases with effective spin–orbit coupling, New J. Phys. 14(7), 073056 (2012)

    Article  ADS  Google Scholar 

  58. G. B. Zhu, Q. Sun, Y. Y. Zhang, K. S. Chan, W. M. Liu, and A. C. Ji, Spin-based effects and transport properties of a spin–orbit-coupled hexagonal optical lattice, Phys. Rev. A 88(2), 023608 (2013)

    Article  ADS  Google Scholar 

  59. L. Zhou, H. Pu, and W. Zhang, Anderson localization of cold atomic gases with effective spin–orbit interaction in a quasiperiodic optical lattice, Phys. Rev. A 87(2), 023625 (2013)

    Article  ADS  Google Scholar 

  60. Y. Qian, M. Gong, V. W. Scarola, and C. Zhang, Spin–orbit driven transitions between Mott insulators and finite momentum superfluids of bosons in optical lattices, arXiv: 1312.4011 (2013)

    Google Scholar 

  61. Y. V. Kartashov, V. V. Konotop, and F. K. Abdullaev, Gap solitons in a spin–orbit-coupled Bose–Einstein condensate, Phys. Rev. Lett. 111(6), 060402 (2013)

    Article  ADS  Google Scholar 

  62. H. Sakaguchi and B. Li, Vortex lattice solutions to the Gross–Pitaevskii equation with spin–orbit coupling in optical lattices, Phys. Rev. A 87(1), 015602 (2013)

    Article  ADS  Google Scholar 

  63. V. E. Lobanov, Y. V. Kartashov, and V. V. Konotop, Fundamental, multipole, and half-vortex gap solitons in spin–orbit coupled Bose–Einstein condensates, Phys. Rev. Lett. 112(18), 180403 (2014)

    Google Scholar 

  64. S. Zhang, W. S. Cole, A. Paramekanti, and N. Trivedi, Spin–orbit coupling in optical lattices, Annual Review of Cold Atoms and Molecules 3, 135 (2015)

    ADS  Google Scholar 

  65. D. Toniolo and J. Linder, Superfluidity breakdown and multiple roton gaps in spin–orbit-coupled Bose–Einstein condensates in an optical lattice, Phys. Rev. A 89, 061605(R) (2014)

    Article  ADS  Google Scholar 

  66. J. Zhao, S. Hu, J. Chang, P. Zhang, and X. Wang, Ferromagnetism in a two-component Bose–Hubbard model with synthetic spin–orbit coupling, Phys. Rev. A 89(4), 043611 (2014)

    Article  ADS  Google Scholar 

  67. Z. Xu, W. S. Cole, and S. Zhang, Mott-superfluid transition for spin–orbit-coupled bosons in one-dimensional optical lattices, Phys. Rev. A 89, 051604(R) (2014)

    Article  ADS  Google Scholar 

  68. Y. Cheng, G. Tang, and S. K. Adhikari, Localization of a spin–orbit-coupled Bose–Einstein condensate in a bichromatic optical lattice, Phys. Rev. A 89(6), 063602 (2014)

    Article  ADS  Google Scholar 

  69. M. Piraud, Z. Cai, I. P. McCulloch, and U. Schollwöck, Quantum magnetism of bosons with synthetic gauge fields in one-dimensional optical lattices: A density-matrix renormalization-group study, Phys. Rev. A 89(6), 063618 (2014)

    Article  ADS  Google Scholar 

  70. W. Han, G. Juzeliunas, W. Zhang, and W. M. Liu, Supersolid with nontrivial topological spin textures in spin–orbit-coupled Bose gases, Phys. Rev. A 91(1), 013607 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  71. W. Li, L. Chen, Z. Chen, Y. Hu, Z. Zhang, and Z. Liang, Probing the flat band of optically trapped spin–orbitalcoupled Bose gases using Bragg spectroscopy, Phys. Rev. A 91(2), 023629 (2015)

    Article  ADS  Google Scholar 

  72. Y. Zhang, Y. Xu, and T. Busch, Gap solitons in spin–orbit-coupled Bose–Einstein condensates in optical lattices, Phys. Rev. A 91(4), 043629 (2015)

    Article  ADS  Google Scholar 

  73. D. W. Zhang, L. B. Fu, Z. D. Wang, and S. L. Zhu, Josephson dynamics of a spin–orbit-coupled Bose–Einstein condensate in a double-well potential, Phys. Rev. A 85(4), 043609 (2012)

    Article  ADS  Google Scholar 

  74. M. A. Garcia-March, G. Mazzarella, L. Dell’Anna, B. Juliá-Díaz, L. Salasnich, and A. Polls, Josephson physics of spin–orbit-coupled elongated Bose–Einstein condensates, Phys. Rev. A 89(6), 063607 (2014)

    Article  ADS  Google Scholar 

  75. R. Citro and A. Naddeo, Spin–orbit coupled Bose–Einstein condensates in a double well, Eur. Phys. J. Spec. Top. 224(3), 503 (2015)

    Article  Google Scholar 

  76. X. Q. Xu and J. H. Han, Spin–orbit coupled Bose–Einstein condensate under rotation, Phys. Rev. Lett. 107(20), 200401 (2011)

    Article  ADS  Google Scholar 

  77. J. Radic T. A. Sedrakyan, I. B. Spielman, and V. Galitski, Vortices in spin–orbit-coupled Bose–Einstein condensates, Phys. Rev. A 84(6), 063604 (2011)

    Article  ADS  Google Scholar 

  78. X. F. Zhou, J. Zhou, and C. Wu, Vortex structures of rotating spin–orbit-coupled Bose–Einstein condensates, Phys. Rev. A 84(6), 063624 (2011)

    Article  ADS  Google Scholar 

  79. B. Ramachandhran, B. Opanchuk, X.J. Liu, H. Pu, P. D. Drummond, and H. Hu, Half-quantum vortex state in a spin–orbit-coupled Bose–Einstein condensate, Phys. Rev. A 85(2), 023606 (2012)

    Article  ADS  Google Scholar 

  80. Y. X. Du, H. Yan, D. W. Zhang, C. J. Shan, and S. L. Zhu, Proposal for a rotation-sensing interferometer with spin–orbit-coupled atoms, Phys. Rev. A 85(4), 043619 (2012)

    Article  ADS  Google Scholar 

  81. C.-F. Liu, H. Fan, Y.-C. Zhang, D.-S. Wang, and W.-M. Liu, Circular-hyperbolic skyrmion in rotating pseudo-spin-1/2 Bose–Einstein condensates with spin–orbit coupling, Phys. Rev. A 86, 053616 (2012)

    Article  ADS  Google Scholar 

  82. L. Dong, L. Zhou, B. Wu, B. Ramachandhran, and H. Pu, Cavity-assisted dynamical spin–orbit coupling in cold atoms, Phys. Rev. A 89, 011602(R) (2014)

    Article  ADS  Google Scholar 

  83. F. Mivehvar and D. L. Feder, Synthetic spin–orbit interactions and magnetic fields in ring-cavity QED, Phys. Rev. A 89(1), 013803 (2014)

    Article  ADS  Google Scholar 

  84. Y. Deng, J. Cheng, H. Jing, and S. Yi, Bose–Einstein condensates with cavity-mediated spin–orbit coupling, Phys. Rev. Lett. 112(14), 143007 (2014)

    Article  ADS  Google Scholar 

  85. B. Padhi and S. Ghosh, Spin–orbit-coupled Bose–Einstein condensates in a cavity: Route to magnetic phases through cavity transmission, Phys. Rev. A 90(2), 023627 (2014)

    Article  ADS  Google Scholar 

  86. F. Mivehvar and D. L. Feder, Enhanced stripe phases in spin–orbit-coupled Bose–Einstein condensates in ring cavities, Phys. Rev. A 92(2), 023611 (2015)

    Article  ADS  Google Scholar 

  87. Y. Deng, J. Cheng, H. Jing, C. P. Sun, and S. Yi, Spin–orbit-coupled dipolar Bose–Einstein condensates, Phys. Rev. Lett. 108(12), 125301 (2012)

    Article  ADS  Google Scholar 

  88. R. M. Wilson, B. M. Anderson, and C. W. Clark, Meron ground state of Rashba spin–orbit-coupled dipolar bosons, Phys. Rev. Lett. 111(18), 185303 (2013)

    Article  ADS  Google Scholar 

  89. S. Gopalakrishnan, I. Martin, and E. A. Demler, Quantum quasicrystals of spin–orbit-coupled dipolar bosons, Phys. Rev. Lett. 111(18), 185304 (2013)

    Article  ADS  Google Scholar 

  90. H. T. Ng, Topological phases in spin–orbit-coupled dipolar lattice bosons, Phys. Rev. A 90(5), 053625 (2014)

    Article  ADS  Google Scholar 

  91. Y. Yousefi, E. Ö. Karabulut, F. Malet, J. Cremon, and S. M. Reimann, Wigner-localized states in spin–orbitcoupled bosonic ultracold atoms with dipolar interaction, Eur. Phys. J. Spec. Top. 224(3), 545 (2015)

    Article  Google Scholar 

  92. Y. Xu, Y. Zhang, and C. Zhang, Bright solitons in a twodimensional spin–orbit-coupled dipolar Bose–Einstein condensate, Phys. Rev. A 92(1), 013633 (2015)

    Article  ADS  Google Scholar 

  93. M. Gong, S. Tewari, and C. Zhang, BCS–BEC crossover and topological phase transition in 3D spin–orbit coupled degenerate Fermi gases, Phys. Rev. Lett. 107, 195303 (2011)

    Article  ADS  Google Scholar 

  94. H. Hu, L. Jiang, X. J. Liu, and H. Pu, Probing anisotropic superfluidity in atomic Fermi gases with Rashba spin–orbit coupling, Phys. Rev. Lett. 107(19), 195304 (2011)

    Article  ADS  Google Scholar 

  95. Z. Q. Yu and H. Zhai, Spin–orbit coupled Fermi gases across a Feshbach resonance, Phys. Rev. Lett. 107(19), 195305 (2011)

    Article  ADS  Google Scholar 

  96. J. Dalibard, F. Gerbier, G. Juzeliunas, and P. Öhberg, Colloquium: Artificial gauge potentials for neutral atoms, Rev. Mod. Phys. 83(4), 1523 (2011)

    Article  ADS  Google Scholar 

  97. V. Galitski and I. B. Spielman, Spin–orbit coupling in quantum gases, Nature 494(7435), 49 (2013)

  98. X. Zhou, Y. Li, Z. Cai, and C. Wu, Unconventional states of bosons with the synthetic spin–orbit coupling, J. Phys. At. Mol. Opt. Phys. 46(13), 134001 (2013)

    Article  ADS  Google Scholar 

  99. N. Goldman, G. Juzeliunas, P. Öhberg, and I. B. Spielman, Light-induced gauge fields for ultracold atoms, Rep. Prog. Phys. 77(12), 126401 (2014)

    Article  ADS  Google Scholar 

  100. H. Zhai, Degenerate quantum gases with spin–orbit coupling: A review, Rep. Prog. Phys. 78(2), 026001 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  101. P. J. Wang and J. Zhang, Spin-orbit coupling in Bose–Einstein condensate and degenerate Fermi gases, Front. Phys. 9(5), 598 (2014)

    Article  Google Scholar 

  102. J. Zhang, H. Hu, X. J. Liu, and H. Pu, Fermi gases with synthetic spin–orbit coupling, Annual Review of Cold Atoms and Molecules 2, 81 (2014)

    Article  ADS  Google Scholar 

  103. Y. Zhang, G. Chen, and C. Zhang, Tunable spin–orbit coupling and quantum phase transition in a trapped Bose–Einstein condensate, Sci. Rep. 3, 1937 (2013)

    ADS  Google Scholar 

  104. Y. Zhang and C. Zhang, Bose–Einstein condensates in spin–orbit-coupled optical lattices: Flat bands and superfluidity, Phys. Rev. A 87(2), 023611 (2013)

    Article  ADS  Google Scholar 

  105. R. H. Dicke, Coherence in spontaneous radiation processes, Phys. Rev. 93(1), 99 (1954)

    Article  ADS  MATH  Google Scholar 

  106. C. Emary, and T. Brandes, Chaos and the quantum phase transition in the Dicke model, Phys. Rev. E 67(6), 066203 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  107. M. Gross and S. Haroche, Superradiance: An essay on the theory of collective spontaneous emission, Phys. Rep. 93(5), 301 (1982)

    Article  ADS  Google Scholar 

  108. K. Baumann, C. Guerlin, F. Brennecke, and T. Esslinger, Dicke quantum phase transition with a superfluid gas in an optical cavity, Nature 464(7293), 1301 (2010)

    Article  ADS  Google Scholar 

  109. Y. Li, G. Martone, and S. Stringari, Sum rules, dipole oscillation and spin polarizability of a spin–orbit coupled quantum gas, Europhys. Lett. 99(5), 56008 (2012)

    ADS  Google Scholar 

  110. S. Stringari, Collective excitations of a trapped Bosecondensed gas, Phys. Rev. Lett. 77(12), 2360 (1996)

    Article  ADS  Google Scholar 

  111. D. Guéry-Odelin and S. Stringari, Scissors mode and superfluidity of a trapped Bose–Einstein condensed gas, Phys. Rev. Lett. 83(22), 4452 (1999)

    Article  ADS  Google Scholar 

  112. O. M. Maragò, S. A. Hopkins, J. Arlt, E. Hodby, G. Hechenblaikner, and C. J. Foot, Observation of the Scissors mode and evidence for superfluidity of a trapped Bose–Einstein condensed gas, Phys. Rev. Lett. 84(10), 2056 (2000)

    Article  ADS  Google Scholar 

  113. J. Lian, L. Yu, J. Q. Liang, G. Chen, and S. Jia, Orbitinduced spin squeezing in a spin–orbit coupled Bose–Einstein condensate, Sci. Rep. 3, 3166 (2013)

    Article  ADS  Google Scholar 

  114. Y. Huang and Z. D. Hu, Spin and field squeezing in a spin–orbit coupled Bose–Einstein condensate, Sci. Rep. 5, 8006 (2015)

    Article  ADS  Google Scholar 

  115. W. Zheng, Z. Q. Yu, X. Cui, and H. Zhai, Properties of Bose gases with the Raman-induced spin–orbit coupling, J. Phys. At. Mol. Opt. Phys. 46(13), 134007 (2013)

    Article  ADS  Google Scholar 

  116. J. Higbie and D. M. Stamper-Kurn, Periodically dressed Bose–Einstein condensate: A superfluid with an anisotropic and variable critical velocity, Phys. Rev. Lett. 88(9), 090401 (2002)

    Article  ADS  Google Scholar 

  117. G. I. Martone, Y. Li, L. P. Pitaevskii, and S. Stringari, Anisotropic dynamics of a spin–orbit-coupled Bose–Einstein condensate, Phys. Rev. A 86(6), 063621 (2012)

    Article  ADS  Google Scholar 

  118. L. D. Landau, The theory of superfluidity of Helium II, J. Phys. (USSR) 5, 71 (1941)

    MATH  Google Scholar 

  119. H. Palevsky, K. Otnes, and K. E. Larsson, Excitation of rotons in Helium II by cold neutrons, Phys. Rev. 112(1), 11 (1958)

    Article  ADS  Google Scholar 

  120. J. L. Yarnell, G. P. Arnold, P. J. Bendt, and E. C. Kerr, Excitations in liquid Helium: Neutron scattering measurements, Phys. Rev. 113(6), 1379 (1959)

    Article  ADS  Google Scholar 

  121. D. G. Henshaw and A. D. B. Woods, Modes of atomic motions in liquid helium by inelastic scattering of neutrons, Phys. Rev. 121(5), 1266 (1961)

    Article  ADS  Google Scholar 

  122. L. Santos, G. V. Shlyapnikov, and M. Lewenstein, Roton–Maxon spectrum and stability of trapped dipolar Bose–Einstein condensates, Phys. Rev. Lett. 90(25), 250403 (2003)

    Article  ADS  Google Scholar 

  123. D. H. J. O’Dell, S. Giovanazzi, and G. Kurizki, Rotons in gaseous Bose–Einstein condensates irradiated by a laser, Phys. Rev. Lett. 90(11), 110402 (2003)

    Article  Google Scholar 

  124. P. B. Blakie, D. Baillie, and R. N. Bisset, Roton spectroscopy in a harmonically trapped dipolar Bose–Einstein condensate, Phys. Rev. A 86(2), 021604 (2012)

    Article  ADS  Google Scholar 

  125. M. Jona-Lasinio, K. Lakomy, and L. Santos, Time-offlight roton spectroscopy in dipolar Bose–Einstein condensates, Phys. Rev. A 88(2), 025603 (2013)

    Article  ADS  Google Scholar 

  126. Y. Pomeau and S. Rica, Model of superflow with rotons, Phys. Rev. Lett. 71(2), 247 (1993)

    Article  ADS  Google Scholar 

  127. Y. Pomeau and S. Rica, Dynamics of a model of supersolid, Phys. Rev. Lett. 72(15), 2426 (1994)

    Article  ADS  Google Scholar 

  128. R. Ozeri, N. Katz, J. Steinhauer, and N. Davidson, Colloquium: Bulk Bogoliubov excitations in a Bose–Einstein condensate, Rev. Mod. Phys. 77(1), 187 (2005)

    Article  ADS  Google Scholar 

  129. J. Stenger, S. Inouye, A. P. Chikkatur, D. M. Stamper-Kurn, D. E. Pritchard, and W. Ketterle, Bragg spectroscopy of a Bose–Einstein condensate, Phys. Rev. Lett. 82(23), 4569 (1999)

    Article  ADS  Google Scholar 

  130. D. M. Stamper-Kurn, A. P. Chikkatur, A. Görlitz, S. Inouye, S. Gupta, D. E. Pritchard, and W. Ketterle, Excitation of phonons in a Bose–Einstein condensate by light scattering, Phys. Rev. Lett. 83(15), 2876 (1999)

    Article  ADS  Google Scholar 

  131. J. Steinhauer, R. Ozeri, N. Katz, and N. Davidson, Excitation spectrum of a Bose–Einstein condensate, Phys. Rev. Lett. 88(12), 120407 (2002)

    Article  ADS  Google Scholar 

  132. J. Steinhauer, N. Katz, R. Ozeri, N. Davidson, C. Tozzo, and F. Dalfovo, Bragg spectroscopy of the Multibranch–Bogoliubov spectrum of elongated Bose–Einstein condensates, Phys. Rev. Lett. 90(6), 060404 (2003)

    Article  ADS  Google Scholar 

  133. S. B. Papp, J. M. Pino, R. J. Wild, S. Ronen, C. E. Wieman, D. S. Jin, and E. A. Cornell, Bragg spectroscopy of a strongly interacting Rb85 Bose–Einstein condensate, Phys. Rev. Lett. 101, 135301 (2008)

    Article  ADS  Google Scholar 

  134. X. Du, S. Wan, E. Yesilada, C. Ryu, D. J. Heinzen, Z. Liang, and B. Wu, Bragg spectroscopy of a superfluid Bose–Hubbard gas, New J. Phys. 12(8), 083025 (2010)

    Article  ADS  Google Scholar 

  135. N. Fabbri, D. Clément, L. Fallani, C. Fort, M. Modugno, K. M. R. van der Stam, and M. Inguscio, Excitations of Bose–Einstein condensates in a one-dimensional periodic potential, Phys. Rev. A 79(4), 043623 (2009)

    Article  ADS  Google Scholar 

  136. D. Clément, N. Fabbri, L. Fallani, C. Fort, and M. Inguscio, Exploring correlated 1D Bose gases from the superfluid to the Mott-insulator state by inelastic light scattering, Phys. Rev. Lett. 102, 155301 (2009)

    Article  ADS  Google Scholar 

  137. P. T. Ernst, S. Götze, J. S. Krauser, K. Pyka, D. S. Lühmann, D. Pfannkuche, and K. Sengstock, Probing superfluids in optical lattices by momentum-resolved Bragg spectroscopy, Nat. Phys. 6(1), 56 (2010)

    Article  Google Scholar 

  138. G. Bismut, B. Laburthe-Tolra, E. Maréchal, P. Pedri, O. Gorceix, and L. Vernac, Anisotropic excitation spectrum of a dipolar quantum Bose gas, Phys. Rev. Lett. 109(15), 155302 (2012)

    Article  ADS  Google Scholar 

  139. L. C. Ha, L. W. Clark, C. V. Parker, B. M. Anderson, and C. Chin, Roton-Maxon excitation spectrum of Bose condensates in a shaken optical lattice, Phys. Rev. Lett. 114(5), 055301 (2015)

    Article  ADS  Google Scholar 

  140. Z. Chen and H. Zhai, Collective-mode dynamics in a spin–orbit coupled Bose–Einstein condensate, Phys. Rev. A 86, 041604(R) (2012)

    Article  ADS  Google Scholar 

  141. V. Achilleos, D. J. Frantzeskakis, and P. G. Kevrekidis, Beating dark–dark solitons and Zitterbewegung in spin–orbit-coupled Bose–Einstein condensates, Phys. Rev. A 89(3), 033636 (2014)

    Article  ADS  Google Scholar 

  142. Sh. Mardonov, M. Palmero, M. Modugno, E. Ya. Sherman, and J. G. Muga, Interference of spin–orbitcoupled Bose–Einstein condensates, Europhys. Lett. 106(6), 60004 (2014)

    Article  ADS  Google Scholar 

  143. Y. Li, C. Qu, Y. Zhang, and C. Zhang, Dynamical spindensity waves in a spin–orbit-coupled Bose–Einstein condensate, Phys. Rev. A 92(1), 013635 (2015)

    Article  ADS  Google Scholar 

  144. Sh. Mardonov, E. Ya. Sherman, J. G. Muga, H. W. Wang, Y. Ban, and X. Chen, Collapse of spin–orbitcoupled Bose–Einstein condensates, Phys. Rev. A 91(4), 043604 (2015)

    Article  ADS  Google Scholar 

  145. S. Cao, C. J. Shan, D. W. Zhang, X. Qin, and J. Xu, Dynamical generation of dark solitons in spin–orbitcoupled Bose–Einstein condensates, J. Opt. Soc. Am. B 32(2), 201 (2015)

    Article  ADS  Google Scholar 

  146. E. Schrödinger, Über die kräftefreie Bewegung in der relativistischen Quantenmechanik, Sitzungsber. Preuss. Akad. Wiss. Phys.-Math. Kl. 24, 418 (1930)

    MATH  Google Scholar 

  147. W. Zawadzki and T. M. Rusin, Zitterbewegung (trembling motion) of electrons in semiconductors: A review, J. Phys.: Condens. Matter 23(14), 143201 (2011)

    ADS  Google Scholar 

  148. R. Gerritsma, G. Kirchmair, F. Zähringer, E. Solano, R. Blatt, and C. F. Roos, Quantum simulation of the Dirac equation, Nature 463(7277), 68 (2010)

  149. F. Dreisow, M. Heinrich, R. Keil, A. Tünnermann, S. Nolte, S. Longhi, and A. Szameit, Classical simulation of relativistic Zitterbewegung in photonic lattices, Phys. Rev. Lett. 105, 143902 (2010)

    Article  ADS  Google Scholar 

  150. J. Schliemann, D. Loss, and R. M. Westervelt, Zitterbewegung of electronic wave packets in III-V zincblende semiconductor quantum wells, Phys. Rev. Lett. 94, 206801 (2005)

    Article  ADS  Google Scholar 

  151. J. Vaishnav and C. Clark, Observing Zitterbewegung with ultracold atoms, Phys. Rev. Lett. 100(15), 153002 (2008)

    Article  ADS  Google Scholar 

  152. Y. J. Lin, R. L. Compton, K. Jiménez-García, W. D. Phillips, J. V. Porto, and I. B. Spielman, A synthetic electric force acting on neutral atoms, Nat. Phys. 7(7), 531 (2011)

    Article  Google Scholar 

  153. Y.-C. Zhang, S.-W. Song, C.-F. Liu, and W.-M. Liu, Zitterbewegung effect in spin–orbit-coupled spin-1 ultracold atoms, Phys. Rev. A 87, 023612 (2013)

    Article  ADS  Google Scholar 

  154. O. Morsch and M. Oberthaler, Dynamics of Bose–Einstein condensates in optical lattices, Rev. Mod. Phys. 78, 179 (2006)

    Article  ADS  Google Scholar 

  155. C. L. Kane and E. J. Mele, Quantum spin Hall effect in graphene, Phys. Rev. Lett. 95(22), 226801 (2005)

    Article  ADS  Google Scholar 

  156. Q. Zhu and B. Wu, Superfluidity of Bose–Einstein condensates in ultracold atomic gases, Chin. Phys. B 24(5), 050507 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  157. F. Lin, C. Zhang, and V. W. Scarola, Emergent kinetics and fractionalized charge in 1D spin–orbit coupled Flatband optical lattices, Phys. Rev. Lett. 112, 110404 (2014)

    Article  ADS  Google Scholar 

  158. Biao Wu and Qian Niu, Landau and dynamical instabilities of the superflow of Bose–Einstein condensates in optical lattices, Phys. Rev. A 64, 061603(R) (2001)

    Article  ADS  Google Scholar 

  159. A. Smerzi, A. Trombettoni, P. G. Kevrekidis, and A. R. Bishop, Dynamical superfluid–insulator transition in a chain of weakly coupled Bose–Einstein condensates, Phys. Rev. Lett. 89(17), 170402 (2002)

    Article  ADS  Google Scholar 

  160. M. Machholm, C. J. Pethick, and H. Smith, Band structure, elementary excitations, and stability of a Bose–Einstein condensate in a periodic potential, Phys. Rev. A 67(5), 053613 (2003)

    Google Scholar 

  161. M. Modugno, C. Tozzo, and F. Dalfovo, Role of transverse excitations in the instability of Bose–Einstein condensates moving in optical lattices, Phys. Rev. A 70(4), 043625 (2004)

    Article  ADS  Google Scholar 

  162. A. J. Ferris, M. J. Davis, R. W. Geursen, P. B. Blakie, and A. C. Wilson, Dynamical instabilities of Bose–Einstein condensates at the band edge in one dimensional optical lattices, Phys. Rev. A 77, 012712 (2008)

    Article  ADS  Google Scholar 

  163. S. Hooley and K. A. Benedict, Dynamical instabilities in a two-component Bose–Einstein condensate in a one dimensional optical lattice, Phys. Rev. A 75, 033621 (2007)

    Article  ADS  Google Scholar 

  164. J. Ruostekoski and Z. Dutton, Dynamical and energetic instabilities in multicomponent Bose–Einstein condensates in optical lattices, Phys. Rev. A 76(6), 063607 (2007)

    Article  ADS  Google Scholar 

  165. G. Barontini and M. Modugno, Instabilities of a matter wave in a matter grating, Phys. Rev. A 80(6), 063613 (2009)

    Article  ADS  Google Scholar 

  166. S. Burger, F. S. Cataliotti, C. Fort, F. Minardi, M. Inguscio, M. L. Chiofalo, and M. P. Tosi, Superfluid and dissipative dynamics of a Bose–Einstein condensate in a periodic optical potential, Phys. Rev. Lett. 86(20), 4447 (2001)

    Article  ADS  Google Scholar 

  167. L. Fallani, L. De Sarlo, J. E. Lye, M. Modugno, R. Saers, C. Fort, and M. Inguscio, Observation of dynamical instability for a Bose–Einstein condensate in a moving 1D optical lattice, Phys. Rev. Lett. 93, 140406 (2004)

    Article  ADS  Google Scholar 

  168. J. Mun, P. Medley, G. K. Campbell, L. G. Marcassa, D. E. Pritchard, and W. Ketterle, Phase diagram for a Bose–Einstein condensate moving in an optical lattice, Phys. Rev. Lett. 99(15), 150604 (2007)

    Article  ADS  Google Scholar 

  169. T. Ozawa, L. P. Pitaevskii, and S. Stringari, Supercurrent and dynamical instability of spin–orbit-coupled ultracold Bose gases, Phys. Rev. A 87(6), 063610 (2013)

    Article  ADS  Google Scholar 

  170. P. Cladé, S. Guellati-Khélifa, F. Nez, and F. Biraben, Large momentum beam splitter using Bloch oscillations, Phys. Rev. Lett. 102(24), 240402 (2009)

    Article  ADS  Google Scholar 

  171. Z. Chen and Z. Liang, Ground-state phase diagram of a spin–orbit-coupled bosonic superfluid in an optical lattice, Phys. Rev. A 93(1), 013601 (2016)

    Article  ADS  Google Scholar 

  172. G. Juzeliunas, J. Ruseckas, and J. Dalibard, Generalized Rashba–Dresselhaus spin–orbit coupling for cold atoms, Phys. Rev. A 81(5), 053403 (2010)

    Article  ADS  Google Scholar 

  173. D. L. Campbell, G. Juzeliunas, and I. B. Spielman, Realistic Rashba and Dresselhaus spin-orbit coupling for neutral atoms, Phys. Rev. A 84(2), 025602 (2011)

    Article  ADS  Google Scholar 

  174. B. M. Anderson, G. Juzeliunas, V. M. Galitski, and I. B. Spielman, Synthetic 3D spin–orbit coupling, Phys. Rev. Lett. 108, 235301 (2012)

    Article  ADS  Google Scholar 

  175. Z. F. Xu, L. You, and M. Ueda, Atomic spin–orbit coupling synthesized with magnetic-field-gradient pulses, Phys. Rev. A 87(6), 063634 (2013)

    Article  ADS  Google Scholar 

  176. B. M. Anderson, I. B. Spielman, and G. Juzeliunas, Magnetically generated spin–orbit coupling for ultracold atoms, Phys. Rev. Lett. 111, 125301 (2013)

    Article  ADS  Google Scholar 

  177. G. Juzeliunas, J. Ruseckas, M. Lindberg, L. Santos, and P. Öhberg, Quasirelativistic behavior of cold atoms in light fields, Phys. Rev. A 77, 011802(R) (2008)

    Article  ADS  Google Scholar 

  178. Chuanwei Zhang, Spin–orbit coupling and perpendicular Zeeman field for fermionic cold atoms: Observation of the intrinsic anomalous Hall effect, Phys. Rev. A 82, 021607(R) (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Quantum Systems Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan

    Yongping Zhang & Thomas Busch

  2. Department of Physics and Astronomy, Washington State University, Pullman, WA, 99164, USA

    Maren Elizabeth Mossman & Peter Engels

  3. Department of Physics, The University of Texas at Dallas, Richardson, TX, 75080, USA

    Chuanwei Zhang

Authors
  1. Yongping Zhang
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Maren Elizabeth Mossman
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Thomas Busch
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Peter Engels
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Chuanwei Zhang
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding authors

Correspondence to Yongping Zhang, Peter Engels or Chuanwei Zhang.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Mossman, M.E., Busch, T. et al. Properties of spin–orbit-coupled Bose–Einstein condensates. Front. Phys. 11, 118103 (2016). https://doi.org/10.1007/s11467-016-0560-y

Download citation

  • Received: 20 January 2016

  • Accepted: 18 February 2016

  • Published: 09 June 2016

  • DOI: https://doi.org/10.1007/s11467-016-0560-y

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • atomic Bose–Einstein condensate
  • spin–orbit coupling
  • collective excitations
  • optical lattice
Download PDF

Working on a manuscript?

Avoid the common mistakes

Associated Content

Part of a collection:

Artificial Gauge Field in Ultra-Cold Atomic Gases

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.