Skip to main content

Advertisement

SpringerLink
  1. Home
  2. Frontiers of Physics
  3. Article
Graphene-plasmon polaritons: From fundamental properties to potential applications
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Graphene-Based Plasmonic Waveguides: a Mini Review

12 January 2022

Mariam Saeed, Abdul Ghaffar, … Qaisar Abbas Naqvi

Effect of Uniform Strain on Graphene Surface Plasmon Excitations

21 February 2023

C. Lemus, G. Gonzalez de la Cruz & M. Oliva-Leyva

Plasmonic Characteristics of the Graphene-Photonic Crystal Composite Structure in the IR Regime

25 November 2022

Yue Zhang, Tao Xiong, … Cheng Sun

A systematic insight into the surface plasmon polaritons guided by the graphene based heterostructures

07 September 2020

Tatjana Gric & Edik Rafailov

Plasmonic sensors based on graphene and graphene hybrid materials

13 June 2022

Zhichao Zhang, Yeageun Lee, … SungWoo Nam

Active Control of Surface Plasmon Polaritons by Varying the Chemical Potential of Graphene in Graphene-Covered Metamaterial

27 October 2022

Y. Wang, Y. Yu, … F. Huang

Grating-Assisted Surface Plasmon Resonance for Enhancement of Optical Harmonic Generation in Graphene

10 July 2019

Yan Zhao, Yanyan Huo, … Tingyin Ning

Tunable SPPs supported by hybrid graphene-gyroelectric waveguides: an analytical approach

01 February 2022

Mohammad Bagher Heydari

A plasmon modulator by directly controlling the couple of photon and electron

28 March 2022

Xue-fang Hu, Xiang-yue Zhao, … Chang-gui Lu

Download PDF

Associated Content

Part of a collection:

Special Topic: Frontiers of Plasmonics (Ed. Hong-Xing Xu)

  • Review Article
  • Open Access
  • Published: 04 February 2016

Graphene-plasmon polaritons: From fundamental properties to potential applications

  • Sanshui Xiao1,2,
  • Xiaolong Zhu3,
  • Bo-Hong Li1,2 &
  • …
  • N. Asger Mortensen1,2 

Frontiers of Physics volume 11, Article number: 117801 (2016) Cite this article

  • 5261 Accesses

  • 143 Citations

  • 4 Altmetric

  • Metrics details

Abstract

With unique possibilities for controlling light in nanoscale devices, graphene plasmonics has opened new perspectives to the nanophotonics community with potential applications in metamaterials, modulators, photodetectors, and sensors. In this paper, we briefly review the recent exciting progress in graphene plasmonics. We begin with a general description of the optical properties of graphene, particularly focusing on the dispersion of graphene-plasmon polaritons. The dispersion relation of graphene-plasmon polaritons of spatially extended graphene is expressed in terms of the local response limit with an intraband contribution. With this theoretical foundation of graphene-plasmon polaritons, we then discuss recent exciting progress, paying specific attention to the following topics: excitation of graphene plasmon polaritons, electron-phonon interactions in graphene on polar substrates, and tunable graphene plasmonics with applications in modulators and sensors. Finally, we address some of the apparent challenges and promising perspectives of graphene plasmonics.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. S. A. Maier, Plasmonics: Fundamentals and Applications, New York: Springer, 2007

    Google Scholar 

  2. M. L. Brongersma, Introductory lecture: Nanoplasmonics, Faraday Discuss. 178, 9 (2015)

    Article  Google Scholar 

  3. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, Plasmonics for extreme light concentration and manipulation, Nat. Mater. 9(3), 193 (2010)

    Article  ADS  Google Scholar 

  4. Editorial, Focusing in on applications, Nature Nanotechnol. 10, 1 (2015)

  5. A. Baev, P. N. Prasad, H. Ågren, M. Samoć, and M. Wegener, Metaphotonics: An emerging field with opportunities and challenges, Phys. Rep. 594, 1 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  6. D. K. Gramotnev and S. I. Bozhevolnyi, Plasmonics beyond the diffraction limit, Nat. Photonics 4(2), 83 (2010)

    Article  ADS  Google Scholar 

  7. D. K. Gramotnev and S. I. Bozhevolnyi, Nanofocusing of electromagnetic radiation, Nat. Photonics 8, 13 (2014)

    Article  ADS  Google Scholar 

  8. S. Xiao and N. A. Mortensen, Surface-plasmon-polaritoninduced suppressed transmission through ultrathin metal disk arrays, Opt. Lett. 36(1), 37 (2011)

    Article  ADS  Google Scholar 

  9. S. Xiao, J. Zhang, L. Peng, C. Jeppesen, R. Malureanu, A. Kristensen, and N. A. Mortensen, Nearly zero transmission through periodically modulated ultrathin metal films, Appl. Phys. Lett. 97(7), 071116 (2010)

    Article  ADS  Google Scholar 

  10. C. L. C. Smith, N. Stenger, A. Kristensen, N. A. Mortensen, and S. I. Bozhevolnyi, Gap and channeled plasmons in tapered grooves: A review, Nanoscale 7(21), 9355 (2015)

    Article  ADS  Google Scholar 

  11. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, Channel plasmon subwavelength waveguide components including interferometers and ring resonators, Nature 440(7083), 508 (2006)

    Article  ADS  Google Scholar 

  12. D. Ansell, I. P. Radko, Z. Han, F. J. Rodriguez, S. I. Bozhevolnyi, and A. N. Grigorenko, Hybrid graphene plasmonic waveguide modulators, Nat. Commun. 6, 8846 (2015)

    Article  ADS  Google Scholar 

  13. S. Xiao, L. Liu, and M. Qiu, Resonator channel drop filters in a plasmon-polaritons metal, Opt. Express 14(7), 2932 (2006)

    Article  ADS  Google Scholar 

  14. H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering, Phys. Rev. Lett. 83(21), 4357 (1999)

    Article  ADS  Google Scholar 

  15. D. Punj, M. Mivelle, S. B. Moparthi, T. S. van Zanten, H. Rigneault, N. F. van Hulst, M. F. García-Parajó, and J. Wenger, A plasmonic “antenna-in-box” platform for enhanced single-molecule analysis at micromolar concentrations, Nat. Nanotechnol. 8(7), 512 (2013)

    Article  ADS  Google Scholar 

  16. S. Kawata, Y. Inouye, and P. Verma, Plasmonics for nearfield nano-imaging and superlensing, Nat. Photonics 3(7), 388 (2009)

    Article  ADS  Google Scholar 

  17. F. Wei, D. Lu, H. Shen, W. Wan, J. L. Ponsetto, E. Huang, and Z. Liu, Wide field super-resolution surface imaging through plasmonic structured illumination microscopy, Nano Lett. 14(8), 4634 (2014)

    Article  ADS  Google Scholar 

  18. H. A. Atwater and A. Polman, Plasmonics for improved photovoltaic devices, Nat. Mater. 9(3), 205 (2010)

    Article  ADS  Google Scholar 

  19. S. Xiao, E. Stassen, and N. A. Mortensen, Ultrathinsilicon solar cells with enhanced photocurrentsassisted by plasmonic nanostructures, J. Nanophot. 6, 061503 (2012)

    Article  Google Scholar 

  20. K. Kumar, H. Duan, R. S. Hegde, S. C. W. Koh, J. N. Wei, and J. K. W. Yang, Printing colour at the optical diffraction limit, Nat. Nanotechnol. 7(9), 557 (2012)

    Article  ADS  Google Scholar 

  21. J. S. Clausen, E. Højlund-Nielsen, A. B. Christiansen, S. Yazdi, M. Grajower, H. Taha, U. Levy, A. Kristensen, and N. A. Mortensen, Plasmonic metasurfaces for coloration of plastic consumer products, Nano Lett. 14(8), 4499 (2014)

    Article  ADS  Google Scholar 

  22. X. Zhu, C. Vannahme, E. Højlund-Nielsen, N. A. Mortensen, and A. Kristensen, Plasmonic colour laser printing, Nat. Nanotechnol. doi:10.1038/nnano.2015.285 (2016)

    Google Scholar 

  23. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, Biosensing with plasmonic nanosensors, Nat. Mater. 7(6), 442 (2008)

    Article  ADS  Google Scholar 

  24. M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, A graphene-based broadband optical modulator, Nature 474(7349), 64 (2011)

    Article  ADS  Google Scholar 

  25. A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, et al., Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems, Nanoscale 7(11), 4598 (2015)

    Article  ADS  Google Scholar 

  26. A. N. Grigorenko, M. Polini, and K. S. Novoselov, Graphene plasmonics, Nat. Photonics 6, 749 (2012)

    Article  ADS  Google Scholar 

  27. Y. V. Bludov, A. Ferreira, N. M. R. Peres, and M. I. Vasilevskiy, A primer on surface plasmon-polaritons in graphene, Int. J. Mod. Phys. B 27(10), 1341001 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. F. J. García de Abajo, Graphene plasmonics: Challenges and opportunities, ACS Photonics 1(3), 135 (2014)

    Article  Google Scholar 

  29. T. Low and P. Avouris, Graphene plasmonics for terahertz to mid-infrared applications, ACS Nano 8(2), 1086 (2014)

    Article  Google Scholar 

  30. A. Vakil and N. Engheta, Transformation optics using graphene, Science 332(6035), 1291 (2011)

    Article  ADS  Google Scholar 

  31. H. Raether, Surface Plasmons on Smooth and Rough Surfaces on Gratings, Berlin: Springer, 1988

    Google Scholar 

  32. Y. Ding, X. Zhu, S. Xiao, H. Hu, L. H. Frandsen, N. A. Mortensen, and K. Yvind, Effective electro-optical modulation with high extinction ratio by a graphene-silicon microring resonator, Nano Lett. 15(7), 4393 (2015)

    Article  ADS  Google Scholar 

  33. C. T. Phare, Y.-H. D. Lee, J. Cardenas, and M. Lipson, Graphene electro-optic modulator with 30 GHz bandwidth, Nat. Photonics 9, 511 (2015)

    Article  ADS  Google Scholar 

  34. I. Goykhman, U. Sassi, B. Desiatov, N. Mazurski, S. Milana, D. de Fazio, A. Eiden, J. Khurgin, J. Shappir, U. Levy, and A. C. Ferrari, On-chip integrated, silicon-graphene plasmonic Schottky photodetector, with high responsivity and avalanche photogain, arXiv: 1512.08153

  35. F. H. Koppens, D. E. Chang, and F. J. García de Abajo, Graphene plasmonics: A platform for strong light-matter interactions, Nano Lett. 11(8), 3370 (2011)

    Article  Google Scholar 

  36. S. Thongrattanasiri, A. Manjavacas, and F. J. García de Abajo, Quantum finite-size effects in graphene plasmons, ACS Nano 6(2), 1766 (2012)

    Article  Google Scholar 

  37. T. Christensen, W. Wang, A.-P. Jauho, M. Wubs, and N. A. Mortensen, Classical and quantum plasmonics in graphene nanodisks: The role of edge states, Phys. Rev. B 90, 241414(R) (2014)

    Article  ADS  Google Scholar 

  38. S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, Switching terahertz waves with gate-controlled active graphene metamaterials, Nat. Mater. 11(11), 936 (2012)

    Article  ADS  Google Scholar 

  39. B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, Broadband graphene terahertz modulators enabled by intraband transitions, Nat. Commun. 3, 780 (2012)

    Article  ADS  Google Scholar 

  40. G. Liang, X. Hu, X. Yu, Y. Shen, L. H. Li, A. G. Davies, E. H. Linfield, H. K. Liang, Y. Zhang, S. F. Yu, and Q. J. Wang, Integrated terahertz graphene modulator with 100% modulation depth, ACS Photonics 2(11), 1559 (2015)

    Article  Google Scholar 

  41. L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, Graphene plasmonics for tunable terahertz metamaterials, Nat. Nanotechnol. 6(10), 630 (2011)

    Article  ADS  Google Scholar 

  42. A. Marini, I. Silveiro, and F. J. García de Abajo, Molecular sensing with tunable graphene plasmons, ACS Photonics 2(7), 876 (2015)

    Article  Google Scholar 

  43. D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García de Abajo, V. Pruneri, and H. Altug, Mid-infrared plasmonic biosensing with graphene, Science 349(6244), 165 (2015)

    Article  ADS  Google Scholar 

  44. C. F. Chen, C. H. Park, B. W. Boudouris, J. Horng, B. Geng, C. Girit, A. Zettl, M. F. Crommie, R. A. Segalman, S. G. Louie, and F. Wang, Controlling inelastic light scattering quantum pathways in graphene, Nature 471(7340), 617 (2011)

    Article  ADS  Google Scholar 

  45. I. Khrapach, F. Withers, T. H. Bointon, D. K. Polyushkin, W. L. Barnes, S. Russo, and M. F. Craciun, Novel highly conductive and transparent graphene-based conductors, Adv. Mater. 24(21), 2844 (2012)

    Article  Google Scholar 

  46. T. Christensen, From classical to quantum plasmonics in three and two dimensions, PhD Thesis, Technical University of Denmark, 2015

    Google Scholar 

  47. A. Bostwick, T. Ohta, T. Seyller, K. Horn, and E. Rotenberg, Quasiparticle dynamics in graphene, Nat. Phys. 3(1), 36 (2007)

    Article  Google Scholar 

  48. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, The electronic properties of graphene, Rev. Mod. Phys. 81(1), 109 (2009)

    Article  ADS  Google Scholar 

  49. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, Fine structure constant defines visual transparency of graphene, Science 320(5881), 1308 (2008)

    Article  ADS  Google Scholar 

  50. S. A. Mikhailov and K. Ziegler, New electromagnetic mode in graphene, Phys. Rev. Lett. 99(1), 016803 (2007)

    Article  ADS  Google Scholar 

  51. M. Jablan, H. Buljan, and M. Soljačić, Plasmonics in graphene at infrared frequencies, Phys. Rev. B 80(24), 245435 (2009)

    Article  ADS  Google Scholar 

  52. B. Wunsch, T. Stauber, F. Sols, and F. Guinea, Dynamical polarization of graphene at finite doping, New J. Phys. 8(12), 318 (2006)

    Article  ADS  Google Scholar 

  53. E. H. Hwang and S. Das Sarma, Dielectric function, screening, and plasmons in two-dimensional graphene, Phys. Rev. B 75(20), 205418 (2007)

    Article  ADS  Google Scholar 

  54. L. A. Falkovsky and A. A. Varlamov, Space-time dispersion of graphene conductivity, Eur. Phys. J. B 56(4), 281 (2007)

    Article  ADS  Google Scholar 

  55. S. Raza, S. I. Bozhevolnyi, M. Wubs, and N. A. Mortensen, Nonlocal optical response in metallic nanostructures, J. Phys.: Condens. Matter 27(18), 183204 (2015)

    ADS  Google Scholar 

  56. J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. L. Koppens, Optical nano-imaging of gate-tunable graphene plasmons, Nature 487(7405), 77 (2012)

    ADS  Google Scholar 

  57. Q. Zhang, X. Li, M. M. Hossain, Y. Xue, J. Zhang, J. Song, J. Liu, M. D. Turner, S. Fan, Q. Bao, and M. Gu, Graphene surface plasmons at the near-infrared optical regime, Sci. Rep. 4, 6559 (2014)

    Article  ADS  Google Scholar 

  58. X. Zhu, W. Yan, P. U. Jepsen, O. Hansen, N. A. Mortensen, and S. Xiao, Experimental observation of plasmons in a graphene monolayer resting on a two-dimensional subwavelength silicon grating, Appl. Phys. Lett. 102(13), 131101 (2013)

    Article  ADS  Google Scholar 

  59. M. Farhat, S. Guenneau, and H. Baǧcı, Exciting graphene surface plasmon polaritons through light and sound interplay, Phys. Rev. Lett. 111(23), 237404 (2013)

    Article  ADS  Google Scholar 

  60. H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, Tunable infrared plasmonic devices using graphene/insulator stacks, Nat. Nanotechnol. 7(5), 330 (2012)

    Article  ADS  Google Scholar 

  61. Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, Gate-tuning of graphene plasmons revealed by infrared nano-imaging, Nature 487(7405), 82 (2012)

    ADS  Google Scholar 

  62. Z. Fei, G. O. Andreev, W. Bao, L. M. Zhang, A. S. McLeod, C. Wang, M. K. Stewart, Z. Zhao, G. Dominguez, M. Thiemens, M. M. Fogler, M. J. Tauber, A. H. Castro-Neto, C. N. Lau, F. Keilmann, and D. N. Basov, Infrared nanoscopy of Dirac plasmons at the graphene-SiO2 interface, Nano Lett. 11(11), 4701 (2011)

    Article  ADS  Google Scholar 

  63. G. X. Ni, H. Wang, J. S. Wu, Z. Fei, M. D. Goldflam, F. Keilmann, B. Özyilmaz, A. H. Castro Neto, X. M. Xie, M. M. Fogler, and D. N. Basov, Plasmons in graphene Moiré superlattices, Nat. Mater. 14(12), 1217 (2015)

    Article  ADS  Google Scholar 

  64. E. Yoxall, M. Schnell, A. Y. Nikitin, O. Txoperena, A. Woessner, M. B. Lundeberg, F. Casanova, L. E. Hueso, F. H. L. Koppens, and R. Hillenbrand, Direct observation of ultraslow hyperbolic polariton propagation with negative phase velocity, Nat. Photonics 9(10), 674 (2015)

    Article  ADS  Google Scholar 

  65. P. Li, M. Lewin, A. V. Kretinin, J. D. Caldwell, K. S. Novoselov, T. Taniguchi, K. Watanabe, F. Gaussmann, and T. Taubner, Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging and focusing, Nat. Commun. 6, 7507 (2015)

    Article  ADS  Google Scholar 

  66. P. Alonso-González, A. Y. Nikitin, F. Golmar, A. Centeno, A. Pesquera, S. Vélez, J. Chen, G. Navickaite, F. Koppens, A. Zurutuza, F. Casanova, L. E. Hueso, and R. Hillenbrand, Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns, Science 344(6190), 1369 (2014)

    Article  ADS  Google Scholar 

  67. A. Y. Nikitin, P. Alonso-González, and R. Hillenbrand, Efficient coupling of light to graphene plasmons by compressing surface polaritons with tapered bulk materials, Nano Lett. 14(5), 2896 (2014)

    Article  ADS  Google Scholar 

  68. K. Y. M. Yeung, J. Chee, H. Yoon, Y. Song, J. Kong, and D. Ham, Far-infrared graphene plasmonic crystals for plasmonic band engineering, Nano Lett. 14(5), 2479 (2014)

    Article  ADS  Google Scholar 

  69. W. Gao, J. Shu, C. Qiu, and Q. Xu, Excitation of plasmonic waves in graphene by guided-mode resonances, ACS Nano 6(9), 7806 (2012)

    Article  Google Scholar 

  70. W. Gao, G. Shi, Z. Jin, J. Shu, Q. Zhang, R. Vajtai, P. M. Ajayan, J. Kono, and Q. Xu, Excitation and active control of propagating surface plasmon polaritons in graphene, Nano Lett. 13(8), 3698 (2013)

    Article  ADS  Google Scholar 

  71. J. Schiefele, J. Pedrós, F. Sols, F. Calle, and F. Guinea, Coupling light into graphene plasmons through surface acoustic waves, Phys. Rev. Lett. 111(23), 237405 (2013)

    Article  ADS  Google Scholar 

  72. T. Christensen, A. P. Jauho, M. Wubs, and N. A. Mortensen, Localized plasmons in graphene-coated nanospheres, Phys. Rev. B 91(12), 125414 (2015)

    Article  ADS  Google Scholar 

  73. W. Wang, B. Li, E. Stassen, N. A. Mortensen, and J. Christensen, Localized surface plasmons in vibrating graphene nanodisks, Nanoscale, 2016, DOI: 10.1039/C5NR08812G, arXiv: 1502.00535

    Google Scholar 

  74. A. Reserbat-Plantey, K. G. Schädler, L. Gaudreau, G. Navickaite, J. Güttinger, D. Chang, C. Toninelli, A. Bachtold, and F. H. L. Koppens, Electromechanical control of nitrogen-vacancy defect emission using graphene NEMS, Nat. Commun. 7, 10218 (2016)

    Article  ADS  Google Scholar 

  75. D. Smirnova, S. H. Mousavi, Z. Wang, Y. S. Kivshar, and A. B. Khanikaev, Trapping and guiding surface plasmons in curved graphene landscapes, arXiv: 1508.02729

  76. M. Jablan, M. Soljačić, and H. Buljan, Unconventional plasmon-phonon coupling in graphene, Phys. Rev. B 83(16), 161409 (2011)

    Article  ADS  Google Scholar 

  77. Y. Liu and R. F. Willis, Plasmon-phonon strongly coupled mode in epitaxial graphene, Phys. Rev. B 81(8), 081406 (2010)

    Article  ADS  Google Scholar 

  78. H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, Damping pathways of midinfrared plasmons in graphene nanostructures, Nat. Photonics 7(5), 394 (2013)

    Article  ADS  Google Scholar 

  79. X. Zhu, W. Wang, W. Yan, M. B. Larsen, P. Bøggild, T. G. Pedersen, S. Xiao, J. Zi, and N. A. Mortensen, Plasmonphonon coupling in large-area graphene dot and antidot arrays fabricated by nanosphere lithography, Nano Lett. 14(5), 2907 (2014)

    Article  ADS  Google Scholar 

  80. V. W. Brar, M. S. Jang, M. Sherrott, S. Kim, J. J. Lopez, L. B. Kim, M. Choi, and H. Atwater, Hybrid surface-phononplasmon polariton modes in graphene/monolayer h-BN heterostructures, Nano Lett. 14(7), 3876 (2014)

    Article  ADS  Google Scholar 

  81. K. Bolotin, K. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. Stormer, Ultrahigh electron mobility in suspended graphene, Solid State Commun. 146(9–10), 351 (2008)

    Article  ADS  Google Scholar 

  82. S. Fratini and F. Guinea, Substrate-limited electron dynamics in graphene, Phys. Rev. B 77(19), 195415 (2008)

    Article  ADS  Google Scholar 

  83. K. Hess and P. Vogl, Remote polar phonon scattering in silicon inversion layers, Solid State Commun. 30(12), 807 (1979)

    Article  ADS  Google Scholar 

  84. C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, Boron nitride substrates for high-quality graphene electronics, Nat. Nanotechnol. 5(10), 722 (2010)

    Article  ADS  Google Scholar 

  85. S. Pisana, M. Lazzeri, C. Casiraghi, K. S. Novoselov, A. K. Geim, A. C. Ferrari, and F. Mauri, Breakdown of the adiabatic Born-Oppenheimer approximation in graphene, Nat. Mater. 6(3), 198 (2007)

    Article  ADS  Google Scholar 

  86. A. Mooradian and G. B. Wright, Observation of the interaction of plasmons with longitudinal optical phonons in GaAs, Phys. Rev. Lett. 16(22), 999 (1966)

    Article  ADS  Google Scholar 

  87. E. H. Hwang, R. Sensarma, and S. Das Sarma, Plasmonphonon coupling in graphene, Phys. Rev. B82(19), 195406 (2010)

    Article  ADS  Google Scholar 

  88. R. J. Koch, T. Seyller, and J. A. Schaefer, Strong phononplasmon coupled modes in the graphene/silicon carbide heterosystem, Phys. Rev. B 82(20), 201413 (2010)

    Article  ADS  Google Scholar 

  89. I. Forbeaux, J. M. Themlin, and J. M. Debever, Heteroepitaxial graphite on 6H-SiC(0001): Interface formation through conduction-band electronic structure, Phys. Rev. B 58(24), 16396 (1998)

    Article  ADS  Google Scholar 

  90. Y. Ou, X. Zhu, V. Jokubavicius, R. Yakimova, N. A. Mortensen, M. Syväjärvi, S. Xiao, and H. Ou, Broadband antireflection and light extraction enhancement in fluorescent SiC with nanodome structures, Sci. Rep. 4, 4662 (2014)

    ADS  Google Scholar 

  91. X. Zhu, Y. Ou, V. Jokubavicius, M. Syvajarvi, O. Hansen, H. Ou, N. A. Mortensen, and S. Xiao, Broadband lightextraction enhanced by arrays of whispering gallery resonators, Appl. Phys. Lett. 101(24), 241108 (2012)

    Article  ADS  Google Scholar 

  92. X. Zhu, C. Zhang, X. Liu, O. Hansen, S. Xiao, N. A. Mortensen, and J. Zi, Evaporation of water droplets on “lock-and-key” structures with nanoscale features, Langmuir 28(25), 9201 (2012)

    Article  Google Scholar 

  93. X. Zhu, F. Xie, L. Shi, X. Liu, N. A. Mortensen, S. Xiao, J. Zi, and W. Choy, Broadband enhancement of spontaneous emission in a photonic-plasmonic structure, Opt. Lett. 37(11), 2037 (2012)

    Article  ADS  Google Scholar 

  94. X. Zhu, S. Xiao, L. Shi, X. Liu, J. Zi, O. Hansen, and N. A. Mortensen, A stretch-tunable plasmonic structure with a polarization-dependent response, Opt. Express 20(5), 5237 (2012)

    Article  ADS  Google Scholar 

  95. Y. Li, H. Yan, D. B. Farmer, X. Meng, W. Zhu, R. M. Osgood, T. F. Heinz, and P. Avouris, Graphene plasmon enhanced vibrational sensing of surface-adsorbed layers, Nano Lett. 14(3), 1573 (2014)

    Article  ADS  Google Scholar 

  96. I. D. Barcelos, A. R. Cadore, L. C. Campos, A. Malachias, K. Watanabe, T. Taniguchi, F. C. Maia, R. Freitas, and C. Deneke, Graphene/h-BN plasmon-phonon coupling and plasmon delocalization observed by infrared nanospectroscopy, Nanoscale 7(27), 11620 (2015)

    Article  ADS  Google Scholar 

  97. V. W. Brar, M. S. Jang, M. Sherrott, J. J. Lopez, and H. A. Atwater, Highly confined tunable mid-infrared plasmonics in graphene nanoresonators, Nano Lett. 13(6), 2541 (2013)

    Article  ADS  Google Scholar 

  98. M. M. Jadidi, A. B. Sushkov, R. L. Myers-Ward, A. K. Boyd, K. M. Daniels, D. K. Gaskill, M. S. Fuhrer, H. D. Drew, and T. E. Murphy, Tunable terahertz hybrid metal-graphene plasmons, Nano Lett. 15(10), 7099 (2015)

    Article  ADS  Google Scholar 

  99. M. K. Hedayati, A. U. Zillohu, T. Strunskus, F. Faupel, and M. Elbahri, Plasmonic tunable metamaterial absorber as ultraviolet protection film, Appl. Phys. Lett. 104(4), 041103 (2014)

    Article  ADS  Google Scholar 

  100. D. Franklin, Y. Chen, A. Vazquez-Guardado, S. Modak, J. Boroumand, D. Xu, S. T. Wu, and D. Chanda, Polarizationindependent actively tunable colour generation on imprinted plasmonic surfaces, Nat. Commun. 6, 7337 (2015)

    Article  ADS  Google Scholar 

  101. A. Yang, T. B. Hoang, M. Dridi, C. Deeb, M. H. Mikkelsen, G. C. Schatz, and T. W. Odom, Real-time tunable lasing from plasmonic nanocavity arrays, Nat. Commun. 6, 6939 (2015)

    Article  ADS  Google Scholar 

  102. G. C. Dyer, G. R. Aizin, S. J. Allen, A. D. Grine, D. Bethke, J. L. Reno, and E. A. Shaner, Induced transparency by coupling of Tamm and defect states in tunable terahertz plasmonic crystals, Nat. Photonics 7(11), 925 (2013)

    Article  ADS  Google Scholar 

  103. B. Fluegel, A. Mascarenhas, D. W. Snoke, L. N. Pfeiffer, and K. West, Plasmonic all-optical tunable wavelength shifter, Nat. Photonics 1(12), 701 (2007)

    Article  ADS  Google Scholar 

  104. Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, Gated tunability and hybridization of localized plasmons in nanostructured graphene, ACS Nano 7(3), 2388 (2013)

    Article  Google Scholar 

  105. V. W. Brar, M. C. Sherrott, M. S. Jang, S. Kim, L. Kim, M. Choi, L. A. Sweatlock, and H. A. Atwater, Electronic modulation of infrared radiation in graphene plasmonic resonators, Nat. Commun. 6, 7032 (2015)

    Article  ADS  Google Scholar 

  106. N. A. Mortensen, S. Xiao, and J. Pedersen, Liquid-infiltrated photonic crystals: Enhanced light-matter interactions for lab-on-a-chip applications, Microfluid. Nanofluidics 4(1), 117 (2008)

    Article  Google Scholar 

  107. L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms, Nano Lett. 6(9), 2060 (2006)

    Article  ADS  Google Scholar 

  108. C. Jeppesen, S. Xiao, N. A. Mortensen, and A. Kristensen, Metamaterial localized resonance sensors: Prospects and limitations, Opt. Express 18(24), 25075 (2010)

    Article  ADS  Google Scholar 

  109. M. Freitag, T. Low, W. Zhu, H. Yan, F. Xia, and P. Avouris, Photocurrent in graphene harnessed by tunable intrinsic plasmons, Nat. Commun. 4, 1951 (2013)

    Article  ADS  Google Scholar 

  110. X. Zhu, L. Shi, M. S. Schmidt, A. Boisen, O. Hansen, J. Zi, S. Xiao, and N. A. Mortensen, Enhanced light-matter interactions in graphene-covered gold nanovoid arrays, Nano Lett. 13(10), 4690 (2013)

    Article  ADS  Google Scholar 

  111. J. Kim, H. Son, D. J. Cho, B. Geng, W. Regan, S. Shi, K. Kim, A. Zettl, Y. R. Shen, and F. Wang, Electrical control of optical plasmon resonance with graphene, Nano Lett. 12(11), 5598 (2012)

    Article  ADS  Google Scholar 

  112. S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, Inductive tuning of Fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared, Nano Lett. 13(3), 1111 (2013)

    Article  ADS  Google Scholar 

  113. J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, M. Muoth, A. P. Seitsonen, M. Saleh, X. Feng, K. Müllen, and R. Fasel, Atomically precise bottom-up fabrication of graphene nanoribbons, Nature 466(7305), 470 (2010)

    Article  ADS  Google Scholar 

  114. X. Li, X. Wang, L. Zhang, S. Lee, and H. Dai, Chemically derived, ultrasmooth graphene nanoribbon semiconductors, Science 319(5867), 1229 (2008)

    Article  ADS  Google Scholar 

  115. S. Rasappa, J. M. Caridad, L. Schulte, A. Cagliani, D. Borah, M. A. Morris, P. Bøggild, and S. Ndoni, High quality sub-10 nm graphene nanoribbons by on-chip PS-b-PDMS block copolymer lithography, RSC Adv. 5, 66711 (2015)

    Article  Google Scholar 

  116. W. Wang, T. Christensen, A. P. Jauho, K. S. Thygesen, M. Wubs, and N. A. Mortensen, Plasmonic eigenmodes in individual and bow-tie graphene nanotriangles, Sci. Rep. 5, 9535 (2015)

    Article  ADS  Google Scholar 

  117. A. Woessner, M. B. Lundeberg, Y. Gao, A. Principi, P. Alonso-González, M. Carrega, K. Watanabe, T. Taniguchi, G. Vignale, M. Polini, J. Hone, R. Hillenbrand, and F. H. L. Koppens, Highly confined low-loss plasmons in grapheneboron nitride heterostructures, Nat. Mater. 14(4), 421 (2015)

    Article  ADS  Google Scholar 

  118. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306, 666 (2004)

    Article  ADS  Google Scholar 

  119. Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Experimental observation of the quantum Hall effect and Berry’s phase in graphene, Nature 438(7065), 201 (2005)

    Article  ADS  Google Scholar 

  120. Y. Hao, M. S. Bharathi, L. Wang, Y. Liu, H. Chen, S. Nie, X. Wang, H. Chou, C. Tan, B. Fallahazad, H. Ramanarayan, C. W. Magnuson, E. Tutuc, B. I. Yakobson, K. F. McCarty, Y. W. Zhang, P. Kim, J. Hone, L. Colombo, and R. S. Ruoff, The role of surface oxygen in the growth of large singlecrystal graphene on copper, Science 342(6159), 720 (2013)

    Article  ADS  Google Scholar 

  121. T. Wu, X. Zhang, Q. Yuan, J. Xue, G. Lu, Z. Liu, H. Wang, H. Wang, F. Ding, Q. Yu, X. Xie, and M. Jiang, Fast growth of inch-sized single-crystalline graphene from a controlled single nucleus on Cu-Ni alloys, Nat. Mater. 15(1), 43 (2016)

    Article  ADS  Google Scholar 

  122. J. L. Cheng, N. Vermeulen, and J. E. Sipe, Third order optical nonlinearity of graphene, New J. Phys. 16(5), 053014 (2014)

    Article  ADS  Google Scholar 

  123. N. M. R. Peres, Y. V. Bludov, J. E. Santos, A. P. Jauho, and M. I. Vasilevskiy, Optical bistability of graphene in the terahertz range, Phys. Rev. B 90(12), 125425 (2014)

    Article  ADS  Google Scholar 

  124. D. A. Smirnova, I. V. Shadrivov, A. E. Miroshnichenko, A. I. Smirnov, and Y. S. Kivshar, Second-harmonic generation by a graphene nanoparticle, Phys. Rev. B 90(3), 035412 (2014)

    Article  ADS  Google Scholar 

  125. T. Christensen, W. Yan, A.-P. Jauho, M. Wubs, and N. A. Mortensen, Kerr nonlinearity and plasmonic bistability in graphene nanoribbons, Phys. Rev. B 92, 121407(R) (2015)

    Article  ADS  Google Scholar 

  126. J. D. Cox and F. Javier García de Abajo, Electrically tunable nonlinear plasmonics in graphene nanoislands, Nat. Commun. 5, 5725 (2014)

    Article  ADS  Google Scholar 

  127. J. D. Cox and F. J. García de Abajo, Plasmon-enhanced nonlinear wave mixing in nanostructured graphene, ACS Photonics 2(2), 306 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Photonics Engineering, Technical University of Denmark, DK-2800 Kgs, Lyngby, Denmark

    Sanshui Xiao, Bo-Hong Li & N. Asger Mortensen

  2. Center for Nanostructured Graphene, Technical University of Denmark, DK-2800 Kgs, Lyngby, Denmark

    Sanshui Xiao, Bo-Hong Li & N. Asger Mortensen

  3. Department of Micro and Nanotechnology, Technical University of Denmark, DK-2800 Kgs, Lyngby, Denmark

    Xiaolong Zhu

Authors
  1. Sanshui Xiao
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Xiaolong Zhu
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Bo-Hong Li
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. N. Asger Mortensen
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding authors

Correspondence to Sanshui Xiao or N. Asger Mortensen.

Additional information

This article is published with open access at www.springer.com/11467 and journal.hep.com.cn/fop

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xiao, S., Zhu, X., Li, BH. et al. Graphene-plasmon polaritons: From fundamental properties to potential applications. Front. Phys. 11, 117801 (2016). https://doi.org/10.1007/s11467-016-0551-z

Download citation

  • Received: 29 December 2015

  • Accepted: 11 January 2016

  • Published: 04 February 2016

  • DOI: https://doi.org/10.1007/s11467-016-0551-z

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • graphene
  • plasmonics
  • graphene-plasmon polariton
  • plasmon-phonon interaction
  • tunability
Download PDF

Working on a manuscript?

Avoid the common mistakes

Associated Content

Part of a collection:

Special Topic: Frontiers of Plasmonics (Ed. Hong-Xing Xu)

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.