Abstract
The role of interface couplings on the energy transport of two coupled Frenkel–Kontorova (FK) chains is explored through numerical simulations. In general, it is expected that the interface couplings result in the suppression of heat conduction through the coupled system due to the additional interface phonon–phonon scattering. In the present paper, it is found that the thermal conductivity increases with increasing intensity of interface interactions for weak inter-chain couplings, whereas the heat conduction is suppressed by the interface interaction in the case of strong inter-chain couplings. Based on the phonon spectral energy density method, we demonstrate that the enhancement of energy transport results from the excited phonon modes (in addition to the intrinsic phonon modes), while the strong interface phonon–phonon scattering results in the suppressed energy transport.
This is a preview of subscription content, access via your institution.
References
A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. Yang, Enhanced thermoelectric performance of rough silicon nanowires, Nature 451(7175), 163 (2008)
M. Losego, M. E. Grady, N. R. Sottos, D. G. Cahill, and P. V. Braun, Effects of chemical bonding on heat transport across interfaces, Nat. Mater. 11(6), 502 (2012)
C. Yan, J. Cho, and J. Ahn, Graphene-based flexible and stretchable thin film transistors, Nanoscale 4(16), 4870 (2012)
G. J. Hu and B. Y. Cao, Thermal resistance between crossed carbon nanotubes: Molecular dynamics simulations and analytical modeling, J. Appl. Phys. 14(22), 224308 (2013)
R. Guo and B. Huang, Approaching the alloy limit of thermal conductivity in single-crystalline Si-based thermoelectric nanocomposites: A molecular dynamics investigation, Sci. Rep. 5, 9579 (2015)
R. Guo, X. Wang, and B. Huang, Thermal conductivity of skutterudite CoSb3 from first principles: Substitution and nanoengineering effects, Sci. Rep. 5, 7806 (2015)
J. S. Wang, B. K. Agarwalla, H. Li, and J. Thingna, Nonequilibrium Green’s function method for quantum thermal transport, Front. Phys. 9(6), 673 (2014)
N. P. Dasgupta and P. Yang, Semiconductor nanowires for photovoltaic and photoelectrochemical energy conversion, Front. Phys. 9(3), 289 (2014)
S. Li, Y. F. Dong, D. D. Wang, W. Chen, L. Huang, C. W. Shi, and L. Q. Mai, Hierarchical nanowires for highperformance electrochemical energy storage, Front. Phys. 9(3), 303 (2014)
N. Liu, W. Li, M. Pasta, and Y. Cui, Nanomaterials for electrochemical energy storage, Front. Phys. 9(3), 323 (2014)
Z. Liu and B. Li, Heat conduction in simple networks: The effect of interchain coupling, Phys. Rev. E 76(5), 051118 (2007)
Z. Liu, X. Wu, H. Yang, N. Gupte, and B. Li, Heat flux distribution and rectification of complex networks, New J. Phys. 12(2), 023016 (2010)
E. Scalise, M. Houssa, G. Pourtois, B. van den Broek, V. Afanas’ev, and A. Stesmans, Vibrational properties of silicene and germanene, Nano Res. 6(1), 19 (2013)
H. P. Li and R. Q. Zhang, Vacancy-defect–induced diminution of thermal conductivity in silicene, Europhys. Lett. 99(3), 36001 (2012)
Q. X. Pei, Y. W. Zhang, Z. D. Sha, and V. B. Shenoy, Tuning the thermal conductivity of silicene with tensile strain and isotopic doping: A molecular dynamics study, J. Appl. Phys. 114(3), 033526 (2013)
J. Shiomi and S. Maruyama, Molecular dynamics of diffusive-ballistic heat conduction in single-walled carbon nanotubes, Jpn. J. Appl. Phys. 47(4), 2005 (2008)
J. Hone, M. Whitney, C. Piskoti, and A. Zettl, Thermal conductivity of single-walled carbon nanotubes, Phys. Rev. B 59(4), R2514 (1999)
S. Berber, Y. K. Kwon, and D. Tomanek, Unusually high thermal conductivity of carbon nanotubes, Phys. Rev. Lett. 84(20), 4613 (2000)
J. Shiomi and S. Maruyama, Non-Fourier heat conduction in a single-walled carbon nanotube: Classical molecular dynamics simulations, Phys. Rev. B 73(20), 205420 (2006)
C. Yu, L. Shi, Z. Yao, D. Li, and A. Majumdar, Thermal conductance and thermopower of an individual single-wall carbon nanotube, Nano Lett. 5(9), 1842 (2005)
B. Y. Cao and Q. W. Hou, C. Bing-Yang, and H. Quan-Wen, Thermal conductivity of carbon nanotubes embedded in solids, Chin. Phys. Lett. 25(4), 1392 (2008)
A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, Superior thermal conductivity of single-layer graphene, Nano Lett. 8(3), 902 (2008)
A. A. Balandin, Thermal properties of graphene and nanostructured carbon materials, Nat. Mater. 10(8), 569 (2011)
D. L. Nika, E. P. Pokatilov, A. S. Askerov, and A. A. Balandin, Phonon thermal conduction in graphene: Role of Umklapp and edge roughness scattering, Phys. Rev. B 79(15), 155413 (2009)
K. Saito, J. Nakamura, and A. Natori, Ballistic thermal conductance of a graphene sheet, Phys. Rev. B 76(11), 115409 (2007)
Z. Q. Ye, B. Y. Cao, W. J. Yao, T. Feng, and X. Ruan, Spectral phonon thermal properties in graphene nanoribbons, Carbon 93, 915 (2015)
R. Guo and B. Huang, Thermal transport in nanoporous Si: Anisotropy and junction effects, Int. J. Heat Mass Transfer 77, 131 (2014)
X. Yan, Y. Xiao, and Z. Li, Effects of intertube coupling and tube chirality on thermal transport of carbon nanotubes, J. Appl. Phys. 99(12), 124305 (2006)
D. Donadio and G. Galli, Thermal conductivity of isolated and interacting carbon nanotubes: Comparing results from molecular dynamics and the Boltzmann transport equation, Phys. Rev. Lett. 99(25), 255502 (2007)
Z. Ong, E. Pop, and J. Shiomi, Reduction of phonon lifetimes and thermal conductivity of a carbon nanotube on amorphous silica, Phys. Rev. B 84(16), 165418 (2011)
Z. Guo, D. Zhang, and X. Gong, Manipulating thermal conductivity through substrate coupling, Phys. Rev. B 84(7), 075470 (2011)
Z. Ong and E. Pop, Effect of substrate modes on thermal transport in supported graphene, Phys. Rev. B 84(7), 075471 (2011)
X. Zhang, H. Bao, and M. Hu, Bilateral substrate effect on the thermal conductivity of two-dimensional silicon, Nanoscale 7(14), 6014 (2015)
J. Yang, Y. Yang, S.Waltermire, X.Wu, H. Zhang, T. Gutu, Y. Jiang, Y. Chen, A. Zinn, R. Prasher, T. Xu, and D. Li, Enhanced and switchable nanoscale thermal conduction due to van der Waals interfaces, Nat. Nanotechnol. 7(2), 91 (2012)
O. Braun and Y. Kivshar, Nonlinear dynamics of the Frenkel–Kontorova model, Phys. Rep. 306(1), 1 (1998)
B. Hu and L. Yang, Heat conduction in the Frenkel–Kontorova model, Chaos 15(1), 015119 (2005)
L. Wang and B. Li, Thermal logic gates: Computation with phonons, Phys. Rev. Lett. 99(17), 177208 (2007)
L. Wang and B. Li, Thermal memory: A storage of phononic information, Phys. Rev. Lett. 101(26), 267203 (2008)
B. Hu, L. Yang, and Y. Zhang, Asymmetric heat conduction in nonlinear lattices, Phys. Rev. Lett. 97(12), 124302 (2006)
J. Wang and Z. G. Zheng, Heat conduction and reversed thermal diode: The interface effect, Phys. Rev. E 81(1), 011114 (2010)
E. Diaz, R. Gutierrez, and G. Cuniberti, Heat transport and thermal rectification in molecular junctions: A minimal model approach, Phys. Rev. B 84(14), 144302 (2011)
B. Q. Ai and B. Hu, Heat conduction in deformable Frenkel–Kontorova lattices: Thermal conductivity and negative differential thermal resistance, Phys. Rev. E 83(1), 011131 (2011)
W. R. Zhong, Different thermal conductance of the interand intrachain interactions in a double-stranded molecular structure, Phys. Rev. E 81(6), 061131 (2010)
B. Hu, D. He, Y. Zhang, and L. Yang, Asymmetric heat conduction in the Frenkel–Kontorova model, Korean Phys. Soc. 50, 166 (2007)
D. He, B. Ai, H. K. Chan, and B. Hu, Heat conduction in the nonlinear response regime: Scaling, boundary jumps, and negative differential thermal resistance, Phys. Rev. E 81(4), 041131 (2010)
J. Tekic, D. He, and B. Hu, Noise effects in the ac-driven Frenkel–Kontorova model, Phys. Rev. E 79(3), 036604 (2009)
J. Thomas, J. E. Turney, R. Iutzi, C. Amon, and A. Mc-Gaughey, Predicting phonon dispersion relations and lifetimes from the spectral energy density, Phys. Rev. B 81(8), 081411 (2010)
L. Zhu and B. Li, Low thermal conductivity in ultrathin carbon nanotube (2, 1), Sci. Rep. 4, 4917 (2014)
N. de Koker, Thermal conductivity of MgO periclase from equilibrium first principles molecular dynamics, Phys. Rev. Lett. 103(12), 125902 (2009)
S. Nosé, A molecular dynamics method for simulations in the canonical ensemble, Mol. Phys. 52(2), 255 (1984)
W. G. Hoover, Canonical dynamics: Equilibrium phasespace distributions, Phys. Rev. A 31(3), 1695 (1985)
W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes, Cambridge: Cambridge University Press, 1992
A. V. Savin and O. V. Gendelman, Heat conduction in onedimensional lattices with on-site potential, Phys. Rev. E 67(4), 041205 (2003)
C. Giardiná, R. Livi, A. Politi, and M. Vassalli, Finite thermal conductivity in 1D lattices, Phys. Rev. Lett. 84(10), 2144 (2000)
Q. W. Hou, B. Y. Cao, and Z. Y. Guo, Thermal conductivity of carbon nanotube: From ballistic to diffusive transport, Acta Physica Sinica 58(11), 7809 (2009) (in Chinese)
A. Jain, Y. J. Yu, and A. J. McGaughey, Phonon transport in periodic silicon nanoporous films with feature sizes greater than 100 nm, Phys. Rev. B 87(19), 195301 (2013)
Author information
Authors and Affiliations
Corresponding authors
Rights and permissions
About this article
Cite this article
Su, RX., Yuan, ZQ., Wang, J. et al. Interface-facilitated energy transport in coupled Frenkel–Kontorova chains. Front. Phys. 11, 114401 (2016). https://doi.org/10.1007/s11467-015-0548-z
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11467-015-0548-z
Keywords
- interface couplings
- energy transport
- heat conduction
- phonon-phonon scattering
- Frenkel–Kontorova (FK) chains
- excited phonon modes
- phonon spectral energy density