Skip to main content

Scaling behavior of the thermopower of the archetypal heavy-fermion metal YbRh2Si2

Abstract

We reveal and explain the scaling behavior of the thermopower S/T exhibited by the archetypal heavy-fermion (HF) metal YbRh2Si2 under the application of magnetic field B at temperature T. We show that the same scaling is demonstrated by different HF compounds such as ß-YbAlB4 and the strongly correlated layered cobalt oxide [BiBa0.66K0.36O2]CoO2. Using YbRh2Si2 as an example, we demonstrate that the scaling behavior of S/T is violated at the antiferromagnetic phase transition, while both the residual resistivity ρ 0 and the density of states, N, experience jumps at the phase transition, causing the thermopower to make two jumps and change its sign. Our elucidation is based on flattening of the single-particle spectrum that profoundly affects ρ 0 and N. To depict the main features of the S/T behavior, we construct a T–B schematic phase diagram of YbRh2Si2. Our calculated S/T for the HF compounds are in good agreement with experimental facts and support our observations.

This is a preview of subscription content, access via your institution.

References

  1. P. Coleman, C. Pèpin, Q. Si, and R. Ramazashvili, How do Fermi liquids get heavy and die? J. Phys.: Condens. Matter 13(35), R723 (2001)

    ADS  Google Scholar 

  2. H. Löhneysen, A. Rosch, M. Vojta, and P. Wölfle, Fermiliquid instabilities at magnetic quantum phase transitions, Rev. Mod. Phys. 79(3), 1015 (2007)

    Article  ADS  Google Scholar 

  3. V. R. Shaginyan, M. Ya. Amusia, A. Z. Msezane, and K. G. Popov, Scaling behavior of heavy fermion metals, Phys. Rep. 492(2–3), 31 (2010)

    Article  ADS  Google Scholar 

  4. M. Ya. Amusia, K. G. Popov, V. R. Shaginyan, and W. A. Stephanowich, Theory of Heavy-Fermion Compounds-Theory of Strongly Correlated Fermi-Systems, Springer-Verlag, 2015

    MATH  Google Scholar 

  5. N. Oeschler, S. Hartmann, A. Pikul, C. Krellner, C. Geibel, and F. Steglich, Low-temperature specific heat of YbRh2Si2, Physica B 403(5–9), 1254 (2008)

    Article  ADS  Google Scholar 

  6. V. R. Shaginyan, M. Ya. Amusia, and K. G. Popov, Strongly correlated Fermi-systems: Non-Fermi liquid behavior, quasiparticle effective mass and their interplay, Phys. Lett. A 373(26), 2281 (2009)

    Article  ADS  Google Scholar 

  7. K. S. Kim and C. Pépin, Thermopower as a signature of quantum criticality in heavy fermions, Phys. Rev. B 81(20), 205108 (2010)

    Article  ADS  Google Scholar 

  8. K. S. Kim and C. Pépin, Thermopower as a fingerprint of the Kondo breakdown quantum critical point, Phys. Rev. B 83(7), 073104 (2011)

    Article  ADS  Google Scholar 

  9. A. A. Abrikosov, Fundamentals of the Theory of Metals, Amsterdam: North-Holland, 1988

    Google Scholar 

  10. E. M. Lifshitz, L. D. Landau, and L. P. Pitaevskii, Electrodynamics of Continuous Media, New York: Elsevier, 1984

    Google Scholar 

  11. K. Behnia, D. Jaccard, and J. Flouquet, On the thermoelectricity of correlated electrons in the zero-temperature limit, J. Phys.: Condens. Matter 16(28), 5187 (2004)

    ADS  Google Scholar 

  12. K. Miyake and H. Kohno, Theory of quasi-universal ratio of seebeck coefficient to specific heat in zero-temperature limit in correlated metals, J. Phys. Soc. Jpn. 74(1), 254 (2005)

    Article  MATH  ADS  Google Scholar 

  13. V. Zlatic, R. Monnier, J. K. Freericks, and K. W. Becker, Relationship between the thermopower and entropy of strongly correlated electron systems, Phys. Rev. B 76(8), 085122(2007)

    Article  ADS  Google Scholar 

  14. V. A. Khodel and V. R. Shaginyan, Superfluidity in system with fermion condensate, JETP Lett. 51(9), 553 (1990)

    ADS  Google Scholar 

  15. P. Nozières, Properties of Fermi liquids with a finite range interaction, J. Phys. I France 2(4), 443 (1992)

    Article  Google Scholar 

  16. V. A. Khodel, V. R. Shaginyan, and V. V. Khodel, New approach in the microscopic Fermi systems theory, Phys. Rep. 249(1–2), 1 (1994)

    Article  ADS  Google Scholar 

  17. G. E. Volovik, A new class of normal Fermi liquids, JETP Lett. 53(4), 222 (1991)

    ADS  Google Scholar 

  18. G. E. Volovik, From Standard Model of particle physics to room-temperature superconductivity, Phys. Scr. T164, 014014 (2015)

    Article  ADS  Google Scholar 

  19. L. D. Landau, Theory of Fermi liquid, Sov. Phys. JETP 30(6), 920 (1956)

    MathSciNet  MATH  Google Scholar 

  20. P. Limelette, W. Saulquin, H. Muguerra, and D. Grebille, From quantum criticality to enhanced thermopower in strongly correlated layered cobalt oxide, Phys. Rev. B 81(11), 115113 (2010)

    Article  ADS  Google Scholar 

  21. S. Hartmann, N. Oeschler, C. Krellner, C. Geibel, S. Paschen, and F. Steglich, Thermopower evidence for an abrupt Fermi surface change at the quantum critical point of YbRh2Si2, Phys. Rev. Lett. 104(9), 096401 (2010)

    Article  ADS  Google Scholar 

  22. S. Friedemann, S. Wirth, S. Kirchner, Q. Si, S. Hartmann, C. Krellner, C. Geibel, T. Westerkamp, M. Brando, and F. Steglich, Break up of heavy fermions at an antiferromagnetic instability, J. Phys. Soc. Jpn. 80(10), SA002 (2011)

    Article  ADS  Google Scholar 

  23. P. Gegenwart, J. Custers, C. Geibel, K. Neumaier, T. Tayama, K. Tenya, O. Trovarelli, and F. Steglich, Magneticfield induced quantum critical point in YbRh2Si2, Phys. Rev. Lett. 89(5), 056402 (2002)

    Article  ADS  Google Scholar 

  24. A. Mokashi, S. Li, B. Wen, S. V. Kravchenko, A. A. Shashkin, V. T. Dolgopolov, and M. P. Sarachik, Critical behavior of a strongly interacting 2D electron system, Phys. Rev. Lett. 109(9), 096405 (2012)

    Article  ADS  Google Scholar 

  25. Y. Machida, K. Tomokuni, C. Ogura, K. Izawa, K. Kuga, S. Nakatsuji, G. Lapertot, G. Knebel, J. P. Brison, and J. Flouquet, Thermoelectric response near a quantum critical point of YbAlB4 and YbRh2Si2: A comparative study, Phys. Rev. Lett. 109(15), 156405 (2012)

    Article  ADS  Google Scholar 

  26. S. Paschen, T. Lühmann, S. Wirth, P. Gegenwart, O. Trovarelli, C. Geibel, F. Steglich, P. Coleman, and Q. Si, Hall-effect evolution across a heavy-fermion quantum critical point, Nature 432(7019), 881 (2004)

    Article  ADS  Google Scholar 

  27. U. Köhler, N. Oeschler, F. Steglich, S. Maquilon, and Z. Fisk, Energy scales of Lu1-x YbxRh2Si2 by means of thermopower investigations, Phys. Rev. B 77(10), 104412 (2008)

    Article  ADS  Google Scholar 

  28. V. R. Shaginyan, A. Z. Msezane, K. G. Popov, J. W. Clark, M. V. Zverev, and V. A. Khodel, Magnetic field dependence of the residual resistivity of the heavy-fermion metal CeCoIn5, Phys. Rev. B 86(8), 085147 (2012)

    Article  ADS  Google Scholar 

  29. V. R. Shaginyan, A. Z. Msezane, K. G. Popov, J. W. Clark, M. V. Zverev, and V. A. Khodel, Nature of the quantum critical point as disclosed by extraordinary behavior of magnetotransport and the Lorentz number in the heavy-fermion metal YbRh2Si2, JETP Lett. 96(6), 397 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. R. Shaginyan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shaginyan, V.R., Msezane, A.Z., Japaridze, G.S. et al. Scaling behavior of the thermopower of the archetypal heavy-fermion metal YbRh2Si2 . Front. Phys. 11, 117102 (2016). https://doi.org/10.1007/s11467-015-0536-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-015-0536-3

Keywords

  • thermoelectric and thermomagnetic effects
  • quantum phase transition
  • flat bands
  • non-Fermi-liquid states
  • strongly correlated electron systems
  • heavy fermions