Abstract
Growing graphene on gallium nitride (GaN) at temperatures greater than 900◦C is a challenge that must be overcome to obtain high quality of GaN epi-layers. We successfully met this challenge using C2H2 as the carbon source. We demonstrated that graphene can be grown both on copper and directly on GaN epi-layers. The Raman spectra indicated that the graphene films were about 4–5 layers thick. Meanwhile, the effects of the growth temperature on the growth of the graphene films were systematically studied, and 830◦C was found to be the optimum growth temperature. We successfully grew high-quality graphene films directly on gallium nitride.
This is a preview of subscription content, access via your institution.
References
S. F. Chichibu, A. Uedono, T. Onuma, B. A. Haskell, A. Chakraborty, T. Koyama, P. T. Fini, S. Keller, S. P. Denbaars, J. S. Speck, U. K. Mishra, S. Nakamura, S. Yamaguchi, S. Kamiyama, H. Amano, I. Akasaki, J. Han, and T. Sota, Origin of defect-insensitive emission probability in Incontaining (Al,In,Ga)N alloy semiconductors, Nat. Mater. 5(10), 810 (2006)
S. Nakamura, The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes, Science 281(5379), 955 (1998)
R. H. Horng, S. T. Lin, Y. L. Tsai, M. T. Chu, W. Y. Liao, M. H. Wu, and R. Lin, Mand Lu Y C, Improved conversion efficiency of GaN/InGaN thin-film solar cells, IEEE Electron Device Lett. 30(7), 724 (2009)
U. K. Mishra, P. Parikh, and Y. F. Wu, AlGaN/GaN HEMTs-an overview of device operation and applications, Proc. IEEE 90(6), 1022 (2002)
Y. L. Zhao, Y. L. Song, W. G. Song, W. Liang, X. Y. Jiang, Z. Y. Tang, H. X. Xu, Z. X. Wei, Y. Q. Liu, M. H. Liu, L. Jiang, X.H. Bao, L. J. Wan, and C. L. Bai, Progress of nanoscience in China, Front. Phys. 9(3), 257 (2014)
Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Experimental observation of the quantum Hall effect and Berry’s phase in graphene, Nature 438(7065), 201 (2005)
T. Ohta, A. Bostwick, T. Seyller, K. Horn, and E. Rotenberg, Controlling the electronic structure of bilayer graphene, Science 313(5789), 951 (2006)
F. Miao, S. Wijeratne, Y. Zhang, U. C. Coskun, W. Bao, and C. N. Lau, Phase-coherent transport in graphene quantum billiards, Science 317(5844), 1530 (2007)
K. I. Bolotin, S. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, P. Hone Kim, and H. L. Stormer, Ultrahigh electron mobility in suspended graphene, Solid State Commun. 146(9–10), 351 (2008)
G. Eda, G. Fanchini, and M. Chhowalla, Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material, Nat. Nanotechnol. 3(5), 270 (2008)
C. Berger, Z. Song, T. Li, X. Li, A. Y. Ogbazghi, R. Feng, Z. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics, J. Phys. Chem. B 108(52), 19912 (2004)
M. Y. Han, B. Ozyilmaz, Y. Zhang, and P. Kim, Energy band-gap engineering of graphene nanoribbons, Phys. Rev. Lett. 98(20), 206805 (2007)
N. P. Dasgupta and P. D. Yang, Semiconductor nanowires for photovoltaic and photoelectrochemical energy conversion, Front. Phys. 9(3), 289 (2014)
X. Wang, L. Zhi, and K. Müllen, Transparent, conductive graphene electrodes for dye-sensitized solar cells, Nano Lett. 8(1), 323 (2008)
P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang, F. Schedin, L. A. Ponomarenko, S. V. Morozov, H. F. Gleeson, E. W. Hill, A. K. Geim, and K. S. Novoselov, Graphene-based liquid crystal device, Nano Lett. 8(6), 1704 (2008)
A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, Superior thermal conductivity of single-layer graphene, Nano Lett. 8(3), 902 (2008)
J. Wu, M. Agrawal, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, and P. Peumans, Organic light-emitting diodes on solutionprocessed graphene transparent electrodes, ACS Nano 4(1), 43 (2010)
T. Mueller, F. N. Xia, and P. Avouris, Graphene photo detectors for high-speed optical communications, Nat. Photonics 4(5), 297 (2010)
H. Li, Y. F. Dong, D. D. Wang, W. Chen, L. Huang, C. W. Shi, and L. Q. Mai, Hierarchical nanowires for highperformance electrochemical energy storage, Front. Phys. 9(3), 303 (2014)
N. Liu, W. Li, M. Pasta, and Y. Cui, Nanomaterials for electrochemical energy storage, Front. Phys. 9(3), 323 (2014)
Y. Wu, J. Wang, K. Jiang, and S. Fan, Applications of carbon nanotubes in high performance lithium ion batteries, Front. Phys. 9(3), 351 (2014)
H. Ueta, H. Saida, C. Nakai, Y. Yamada, M. Sasaki, and S. Yamamoto, Highly oriented monolayer graphite formation on Pt(111) by a supersonic methane beam, Surf. Sci. 560(1–3), 183 (2004)
N. Gall, E. Rut’kov, and A. Tontegode, Interaction of silver atoms with iridium and with a two-dimensional graphite film on iridium: Adsorption, desorption, and dissolution, Phys. Solid State 46(2), 371 (2004)
S. Marchini, S. Günther, and J. Wintterlin, Scanning tunneling microscopy of graphene on Ru(0001), Phys. Rev. B 76(7), 075429 (2007)
J. Coraux, A. T. N’Diaye, C. Busse, and T. Michely, Structural coherency of graphene on Ir(111), Nano Lett. 8(2), 565 (2008)
A. L. Vázquez de Parga, F. Calleja, B. Borca, J. J. Passeggi, F. Hinarejos, F. Guinea, and R. Miranda, Periodically rippled graphene: Growth and spatially resolved electronic structure, Phys. Rev. Lett. 100(5), 056807 (2008)
P. W. Sutter, J. I. Flege, and E. A. Sutter, Epitaxial graphene on ruthenium, Nat. Mater. 7(5), 406 (2008)
Y. Hao, M. S. Bharathi, L. Wang, Y. Liu, H. Chen, S. Nie, X. Wang, H. Chou, C. Tan, B. Fallahazad, H. Ramanarayan, C. W. Magnuson, E. Tutuc, B. I. Yakobson, K. F. McCarty, Y. W. Zhang, P. Kim, J. Hone, L. Colombo, and R. S. Ruoff, The role of surface oxygen in the growth of large singlecrystal graphene on copper, Science 342(6159), 720 (2013)
Z. Yun, W. Gang, and H. C. Yang, Direct growth of graphene on gallium nitride by using chemical vapor deposition without extra catalyst, Chin. Phys. B 23(9), 096802 (2014)
Y. S. Kim, J. H. Lee, Y. D. Kim, S. K. Jerng, K. Joo, E. Kim, J. Jung, E. Yoon, Y. D. Park, S. Seo, and S. H. Chun, Methane as an effective hydrogen source for singlelayer graphene synthesis on Cu foil by plasma enhanced chemical vapor depositio, Nanoscale 5(3), 1221 (2013)
M. S. Kim, N. M. Rodriguez, and R. T. K. Baker, The interaction of hydrocarbons with copper-nickel and nickel in the formation of carbon filaments, J. Catal. 131(1), 60 (1991)
M. Furtado and G. Jacob, Study on the influence of annealing effects in GaN VPE, J. Cryst. Growth 64(2), 257 (1983)
A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, Raman spectrum of graphene and graphene layers, Phys. Rev. Lett. 97(18), 187401 (2006)
L. Tao, C. Y. Qiu, F. Yu, H. C. Yang, M. J. Chen, G. Wang, and L. F. Sun, Modification on single-layer graphene induced by low-energy electron-beam irradiation, J. Phys. Chem. C 117(19), 10079 (2013)
M. M. Qin, W. Ji, Y. Y. Feng, and W. Feng, Transparent conductive graphene films prepared by hydroiodic acid and thermal reduction, Chin. Phys. B 23(2), 028103 (2014)
I. Calizo, I. Bejenari, M. Rahman, G. X. Liu, and A. A. Balandin, Ultraviolet Raman microscopy of single and multilayer graphene, J. Appl. Phys. 106(4), 043509 (2009)
Y. Hao, Y. Wang, L. Wang, Z. Ni, Z. Wang, R. Wang, C. K. Koo, Z. Shen, and J. T. L. Thong, Probing layer number and stacking order of few-layer graphene by Raman spectroscopy, Small 6(2), 195 (2010)
G. Nandamuri, S. Roumimov, and R. Solanki, Chemical vapor deposition of graphene films, Nanotechnology 21(14), 145604 (2010)
M. Regmi, M. F. Chisholm, and G. Eres, The effect of growth parameters on the intrinsic properties of large-area single layer graphene grown by chemical vapor deposition on Cu, Carbon 50(1), 134 (2012)
X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, Large-area synthesis of high-quality and uniform graphene films on copper foils, Science 324(5932), 1312 (2009)
P. Trinsoutrot, C. Rabot, H. Vergnes, A. Delamoreanu, A. Zenasni, and B. Caussat, High quality graphene synthesized by atmospheric pressure CVD on copper foil, Surf. Coat. Tech. 230, 87 (2013)
Author information
Authors and Affiliations
Corresponding authors
Rights and permissions
About this article
Cite this article
Wang, B., Zhao, Y., Yi, XY. et al. Direct growth of graphene on gallium nitride using C2H2 as carbon source. Front. Phys. 11, 116803 (2016). https://doi.org/10.1007/s11467-015-0534-5
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11467-015-0534-5
Keywords
- graphene
- C2H2
- gallium nitride
- chemical vapor deposition
- Raman spectroscopy