Skip to main content

Advertisement

SpringerLink
  1. Home
  2. Frontiers of Physics
  3. Article
A polarizing situation: Taking an in-plane perspective for next-generation near-field studies
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Polarization-insensitive plasmon nanofocusing with broadband interference modulation for optical nanoimaging

14 March 2023

Shaobo Li, Fei Wang, … Shuming Yang

Recent advances in tip-enhanced Raman spectroscopy probe designs

27 December 2022

Da Xu, Boqun Liang, … Ming Liu

Tip-Enhanced Second Harmonic Generation: an Approach for Hyper-Raman Spectroscopy

05 September 2018

C. Dab, C. Awada & A. Ruediger

High Depth-of-Field Nanostructures by Rotational Near-Field Photolithography

04 September 2019

Jiaxin Ji, Pengfei Xu, … Yonggang Meng

Theoretical study of 2D sub-wavelength structure fabrication via surface plasmon excitation utilizing the enhanced Kretschmann structure combined with sample rotation

13 March 2022

Tianxu Jia, Yaqian Ren, … Xiaolei Wen

Imaging based on metalenses

04 March 2020

Xiujuan Zou, Gaige Zheng, … Shining Zhu

Electric field enhancement of coupled plasmonic nanostructures for optical amplification

08 February 2023

Jun Hyun Kim, Ja Yeon Lee, … Myung Yung Jeong

Frontiers of light manipulation in natural, metallic, and dielectric nanostructures

01 January 2021

E. De Tommasi, E. Esposito, … I. Rendina

Design and applications of lattice plasmon resonances

09 August 2018

Bharath Bangalore Rajeeva, Linhan Lin & Yuebing Zheng

Download PDF

Associated Content

Part of a collection:

Special Topic: Frontiers of Plasmonics

  • Review Article
  • Open Access
  • Published: 07 January 2016

A polarizing situation: Taking an in-plane perspective for next-generation near-field studies

  • P. James Schuck1,
  • Wei Bao1,2 &
  • Nicholas J. Borys1 

Frontiers of Physics volume 11, Article number: 117804 (2016) Cite this article

  • 1351 Accesses

  • 8 Citations

  • Metrics details

Abstract

By enabling the probing of light–matter interactions at the functionally relevant length scales of most materials, near-field optical imaging and spectroscopy accesses information that is unobtainable with other methods. The advent of apertureless techniques, which exploit the ultralocalized and enhanced near-fields created by sharp metallic tips or plasmonic nanoparticles, has resulted in rapid adoption of near-field approaches for studying novel materials and phenomena, with spatial resolution approaching sub-molecular levels. However, these approaches are generally limited by the dominant out-of-plane polarization response of apertureless tips, restricting the exploration and discovery of many material properties. This has led to recent design and fabrication breakthroughs in near-field tips engineered specifically for enhancing in-plane interactions with near-field light components. This mini-review provides a perspective on recent progress and emerging directions aimed at utilizing and controlling in-plane optical polarization, highlighting key application spaces where in-plane near-field tip responses have enabled recent advancements in the understanding and development of new nanostructured materials and devices.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  1. L. Novotny and B. Hecht, Principles of Nano-Optics, Cambridge: Cambridge University Press, 2006

    Book  Google Scholar 

  2. S. Kawata, Y. Inouye, and P. Verma, Plasmonics for nearfield nano-imaging and superlensing, Nat. Photonics 3(7), 388 (2009)

    Article  ADS  Google Scholar 

  3. M. A. Paesler and P. J. Moyer, Near-Field Optics: Theory, Instrumentation and Applications, New York: Wiley, 1996

    Google Scholar 

  4. J. M. Atkin, S. Berweger, A. C. Jones, and M. B. Raschke, Nano-optical imaging and spectroscopy of order, phases, and domains in complex solids, Adv. Phys. 61(6), 745 (2012)

    Article  ADS  Google Scholar 

  5. M. Fleischer, Near-field scanning optical microscopy nanoprobes, Nanotechnology Reviews 1(4), 313 (2012)

    Article  Google Scholar 

  6. P. J. Schuck, A. Weber-Bargioni, P. D. Ashby, D. F. Ogletree, A. Schwartzberg, and S. Cabrini, Life beyond diffraction: Opening new routes to materials characterization with next-generation optical near-field approaches, Adv. Funct. Mater. 23(20), 2539 (2013)

    Article  Google Scholar 

  7. N. Mauser and A. Hartschuh, Tip-enhanced near-field optical microscopy, Chem. Soc. Rev. 43(4), 1248 (2014)

    Article  Google Scholar 

  8. A. V. Zayats and D. Richards (Eds.), Nano-Optics and Near-Field Optical Microscopy, Artech House, 2008

    Google Scholar 

  9. R. C. Dunn, Near-field scanning optical microscopy, Chem. Rev. 99(10), 2891 (1999)

    Article  Google Scholar 

  10. M. I. Stockman, Nanoplasmonics: The physics behind the applications, Phys. Today 64(2), 39 (2011)

    Article  Google Scholar 

  11. A. Hartschuh, Tip-enhanced near-field optical microscopy, Angew. Chem. Int. Ed. 47(43), 8178 (2008)

    Article  Google Scholar 

  12. B. S. Yeo, J. Stadler, T. Schmid, R. Zenobi, and W. H. Zhang, Tip-enhanced Raman spectroscopy–Its status, challenges and future directions, Chem. Phys. Lett. 472(1–3), 1 (2009)

    Article  ADS  Google Scholar 

  13. B. Pettinger, P. Schambach, C. J. Villagomez, and N. Scott, Tip-enhanced Raman spectroscopy: Near-fields acting on a few molecules, in: Annual Review of Physical Chemistry, M. A. Johnson and T. J. Martinez (Eds.), 2012, pp 379–399

  14. K. Joulain, R. Carminati, J. P. Mulet, and J. J. Greffet, Definition and measurement of the local density of electromagnetic states close to an interface, Phys. Rev. B 68(24), 245405 (2003)

    Article  ADS  Google Scholar 

  15. R. Beams, D. Smith, T. W. Johnson, S. H. Oh, L. Novotny, and A. N. Vamivakas, Nanoscale fluorescence lifetime imaging of an optical antenna with a single diamond NV center, Nano Lett. 13(8), 3807 (2013)

    Article  ADS  Google Scholar 

  16. R. Carminati, A. Caze, D. Cao, F. Peragut, V. Krachmalnicoff, R. Pierrat, and Y. DeWilde, Electromagnetic density of states in complex plasmonic systems, Surf. Sci. Rep. 70(1), 1 (2015)

    Article  ADS  Google Scholar 

  17. N. Rotenberg and L. Kuipers, Mapping nanoscale light fields, Nat. Photonics 8(12), 919 (2014)

    Article  ADS  Google Scholar 

  18. M. Schnell, A. Garcia-Etxarri, J. Alkorta, J. Aizpurua, and R. Hillenbrand, Phase-resolved mapping of the near-field vector and polarization state in nanoscale antenna gaps, Nano Lett. 10(9), 3524 (2010)

    Article  ADS  Google Scholar 

  19. K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, Vector field microscopic imaging of light, Nat. Photonics 1(1), 53 (2007)

    Article  ADS  Google Scholar 

  20. H. Gersen, L. Novotny, L. Kuipers, and N. F. van Hulst, On the concept of imaging nanoscale vector fields, Nat. Photonics 1(5), 242 (2007)

    Article  ADS  Google Scholar 

  21. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th Ed., Cambridge: Cambridge University Press, 1999

    Book  MATH  Google Scholar 

  22. T. Setala, A. Shevchenko, M. Kaivola, and A. T. Friberg, Degree of polarization for optical near fields, Phys. Rev. E 66(1), 016615 (2002)

    Article  ADS  Google Scholar 

  23. S. Patanè, E. Cefali, S. Spadaro, R. Gardelli, M. Albani, and M. Allegrini, Polarization-maintaining near-field optical probes, Journal of Microscopy 229(2), 377 (2008)

    Article  MathSciNet  Google Scholar 

  24. M. J. Fasolka, L. S. Goldner, J. Hwang, A. M. Urbas, P. Derege, T. Swager, and E. L. Thomas, Measuring local optical properties: Near-field polarimetry of photonic block copolymer morphology, Phys. Rev. Lett. 90(1), 016107, 1 (2003)

    Article  ADS  Google Scholar 

  25. P. Anger, P. Bharadwaj, and L. Novotny, Enhancement and quenching of single-molecule fluorescence, Phys. Rev. Lett. 96(11), 113002 (2006)

    Article  ADS  Google Scholar 

  26. E. Betzig and R. J. Chichester, Single molecules observed by near-field scanning optical microscopy, Science 262(5138), 1422 (1993)

    Article  ADS  Google Scholar 

  27. H. Eghlidi, K. G. Lee, X. W. Chen, S. Gotzinger, and V. Sandoghdar, Resolution and enhancement in nanoantennabased fluorescence microscopy, Nano Lett. 9(12), 4007 (2009)

    Article  ADS  Google Scholar 

  28. S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna, Phys. Rev. Lett. 97(1), 017402 (2006)

    Article  ADS  Google Scholar 

  29. P. Bharadwaj, P. Anger, and L. Novotny, Nanoplasmonic enhancement of single-molecule fluorescence, Nanotechnology 18(4), 044017 (2007)

    Article  ADS  Google Scholar 

  30. J. N. Farahani, D. W. Pohl, H. J. Eisler, and B. Hecht, Single quantum dot coupled to a scanning optical antenna: A tunable superemitter, Phys. Rev. Lett. 95(1), 017402 (2005)

    Article  ADS  Google Scholar 

  31. J. M. Gerton, L. A. Wade, G. A. Lessard, Z. Ma, and S. R. Quake, Tip-enhanced fluorescence microscopy at 10 nanometer resolution, Phys. Rev. Lett. 93(18), 180801 (2004)

    Article  ADS  Google Scholar 

  32. A. Ghimire, E. Shafran, and J. M. Gerton, Using a sharp metal tip to control the polarization and direction of emission from a quantum dot, Sci. Rep. 4, 6456 (2014)

    Article  ADS  Google Scholar 

  33. T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence, Nano Lett. 7(1), 28 (2007)

    Article  ADS  Google Scholar 

  34. J. A. Veerman, A. M. Otter, L. Kuipers, and N. F. van Hulst, High definition aperture probes for near-field optical microscopy fabricated by focused ion beam milling, Appl. Phys. Lett. 72(24), 3115 (1998)

    Article  ADS  Google Scholar 

  35. R. Eckel, V. Walhorn, C. Pelargus, J. Martini, J. Enderlein, T. Nann, D. Anselmetti, and R. Ros, Fluorescenceemission control of single CdSe nanocrystals using goldmodified AFM tips, Small 3(1), 44 (2007)

    Article  Google Scholar 

  36. E. Yoskovitz, D. Oron, I. Shweky, and U. Banin, Apertureless near-field distance-dependent lifetime imaging and spectroscopy of semiconductor nanocrystals, J. Phys. Chem. C 112(42), 16306 (2008)

    Article  Google Scholar 

  37. V. V. Protasenko, M. Kuno, A. Gallagher, and D. J. Nesbitt, Fluorescence of single ZnS overcoated CdSe quantum dots studied by apertureless near-field scanning optical microscopy, Opt. Commun. 210(1–2), 11 (2002)

    Article  ADS  Google Scholar 

  38. M. I. Stockman, D. J. Bergman, and T. Kobayashi, Coherent control of nanoscale localization of ultrafast optical excitation in nanosystems, Phys. Rev. B 69(5), 054202 (2004)

    Article  ADS  Google Scholar 

  39. S. Berweger, C. C. Neacsu, Y. B. Mao, H. J. Zhou, S. S. Wong, and M. B. Raschke, Optical nanocrystallography with tip-enhanced phonon Raman spectroscopy, Nat. Nanotechnol. 4(8), 496 (2009)

    Article  ADS  Google Scholar 

  40. S. Berweger, J. M. Atkin, R. L. Olmon, and M. B. Raschke, Light on the tip of a needle: Plasmonic nanofocusing for spectroscopy on the nanoscale, J. Phys. Chem. Lett. 3(7), 945 (2012)

    Article  Google Scholar 

  41. E. J. Sánchez, L. Novotny, and X. S. Xie, Near-field fluorescence microscopy based on two-photon excitation with metal tips, Phys. Rev. Lett. 82(20), 4014 (1999)

    Article  ADS  Google Scholar 

  42. T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, Tip-enhanced coherent anti-Stokes Raman scattering for vibrational nanoimaging, Phys. Rev. Lett. 92(22), 220801 (2004)

    Article  ADS  Google Scholar 

  43. S. Palomba and L. Novotny, Near-field imaging with a localized nonlinear light source, Nano Lett. 9(11), 3801 (2009)

    Article  Google Scholar 

  44. A. V. Zayats and V. Sandoghdar, Apertureless scanning near-field second-harmonic microscopy, Opt. Commun. 178(1–3), 245 (2000)

    Article  ADS  Google Scholar 

  45. A. V. Zayats and V. Sandoghdar, Apertureless near-field optical microscopy via local second-harmonic generation, Journal of Microscopy 202(1), 94 (2001)

    Article  MathSciNet  Google Scholar 

  46. A. V. Zayats and I. I. Smolyaninov, Near-field secondharmonic generation: One contribution of 13 to a Theme “Nano-optics and near-field microscopy”, Royal Society of London Transactions Series A, 362(1817), 843 (2004)

    Article  ADS  Google Scholar 

  47. C. C. Neacsu, B. B. van Aken, M. Fiebig, and M. B. Raschke, Second-harmonic near-field imaging of ferroelectric domain structure of YMnO3, Phys. Rev. B 79(10), 100107 (2009)

    Article  ADS  Google Scholar 

  48. C. Neacsu, G. Steudle, and M. Raschke, Plasmonic light scattering from nanoscopic metal tips, Appl. Phys. B 80(3), 295 (2005)

    Article  ADS  Google Scholar 

  49. K. A. Meyer, K. C. Ng, Z. Gu, Z. Pan, W. B. Whitten, and R. W. Shaw, Combined apertureless near-field optical second-harmonic generation/atomic force microscopy imaging and nanoscale limit of detection, Appl. Spectrosc. 64(1), 1 (2010)

    Article  ADS  Google Scholar 

  50. S. I. Bozhevolnyi, K. Pedersen, T. Skettrup, X. S. Zhang, and M. Belmonte, Far-and near-field second-harmonic imaging of ferroelectric domain walls, Opt. Commun. 152(4–6), 221 (1998)

    Article  ADS  Google Scholar 

  51. L. Mahieu-Williame, S. Gresillon, M. Cuniot-Ponsard, and C. Boccara, Second harmonic generation in the near field and far field: A sensitive tool to probe crystalline homogeneity, J. Appl. Phys. 101(8), 083111 (2007)

    Article  ADS  Google Scholar 

  52. E. Betzig, P. L. Finn, and J. S. Weiner, Combined shear force and near-field scanning optical microscopy, Appl. Phys. Lett. 60(20), 2484 (1992)

    Article  ADS  Google Scholar 

  53. E. Betzig and J. K. Trautman, Near-field optics: Microscopy, spectroscopy, and surface modification beyond the diffraction limit, Science 257(5067), 189 (1992)

    Article  ADS  Google Scholar 

  54. T. J. Silva and S. Schultz, A scanning near-field optical microscope for the imaging of magnetic domains in reflection, Rev. Sci. Instrum. 67(3), 715 (1996)

    Article  ADS  Google Scholar 

  55. F. Matthes, H. Bruckl, and G. Reiss, Near-field magnetooptical microscopy in collection and illumination mode, Ultramicroscopy 71(1–4), 243 (1998)

    Article  Google Scholar 

  56. P. Bertrand, L. Conin, C. Hermann, G. Lampel, J. Peretti, and V. I. Safarov, Imaging of magnetic domains with scanning tunneling optical microscopy, J. Appl. Phys. 83(11), 6834 (1998)

    Article  ADS  Google Scholar 

  57. C. Durkan, I. V. Shvets, and J. C. Lodder, Observation of magnetic domains using a reflection-mode scanning nearfield optical microscope, Appl. Phys. Lett. 70(10), 1323 (1997)

    Article  ADS  Google Scholar 

  58. S. Takahashi, W. Dickson, R. Pollard, and A. Zayats, Nearfield magneto-optical analysis in reflection mode SNOM, Ultramicroscopy 100(3–4), 443 (2004)

    Article  Google Scholar 

  59. P. Fumagalli, A. Rosenberger, G. Eggers, A. Munnemann, N. Held, and G. Guntherodt, Quantitative determination of the local Kerr rotation by scanning near-field magneto-optic microscopy, Appl. Phys. Lett. 72(22), 2803 (1998)

    Article  ADS  Google Scholar 

  60. S. Grésillon, H. Cory, J. C. Rivoal, and A. C. Boccara, Transmission-mode apertureless near-field microscope: Optical and magneto-optical studies, J. Opt. A 1(2), 178 (1999)

    Article  ADS  Google Scholar 

  61. J. N. Walford, J. A. Porto, R. Carminati, and J. J. Greffet, Theory of near-field magnetooptical imaging, J. Opt. Soc. Am. A 19(3), 572 (2002)

    Article  ADS  Google Scholar 

  62. P. Fumagalli, Scanning near-field magneto-optic microscopy, in: Modern Techniques for Characterizing Magnetic Materials, edited by Y. Zhu, Dordrecht: Springer, 2005, pp 455–515

  63. S. Sugano and N. Kojima (Eds.), Magneto-Optics (Springer Series in Solid-State Sciences), Berlin: Springer, 2000

    Book  Google Scholar 

  64. W. Dickson, S. Takahashi, R. Pollard, R. Atkinson, and A. V. Zayats, Near-field imaging of ultrathin magnetic films with in-plane magnetization, Journal of Microscopy 209(3), 194 (2003)

    Article  MathSciNet  Google Scholar 

  65. A. Kapitulnik, J. S. Dodge, and M. M. Fejer, High-resolution magneto-optic measurements with a Sagnac interferometer, J. Appl. Phys. 75(10), 6872 (1994)

    Article  ADS  Google Scholar 

  66. B. L. Petersen, A. Bauer, G. Meyer, T. Crecelius, and G. Kaindl, Kerr-rotation imaging in scanning near-field optical microscopy using a modified Sagnac interferometer, Appl. Phys. Lett. 73(4), 538 (1998)

    Article  ADS  Google Scholar 

  67. I. I. Smolyaninov, A. V. Zayats, and C. C. Davis, Near-field second-harmonic imaging of ferromagnetic and ferroelectric materials, Opt. Lett. 22(21), 1592 (1997)

    Article  ADS  Google Scholar 

  68. D. Wegner, U. Conrad, J. Gudde, G. Meyer, T. Crecelius, and A. Bauer, In-plane magnetization of garnet films imaged by proximal probe nonlinear magneto-optical microscopy, J. Appl. Phys. 88(4), 2166 (2000)

    Article  ADS  Google Scholar 

  69. W. Dickson, S. Takahashi, C. M. I. Boronat, R. M. Bowman, J. M. Gregg, and A. V. Zayats, Near-field secondharmonic imaging of thin ferroelectric films, Phys. Rev. B 72(9), 094110 (2005)

    Article  ADS  Google Scholar 

  70. J. Stadler, T. Schmid, and R. Zenobi, Developments in and practical guidelines for tip-enhanced Raman spectroscopy, Nanoscale 4(6), 1856 (2012)

    Article  ADS  Google Scholar 

  71. T. Mino, Y. Saito, and P. Verma, Quantitative analysis of polarization-controlled tip-enhanced Raman imaging through the evaluation of the tip dipole, ACS Nano 8(10), 10187 (2014)

    Article  Google Scholar 

  72. Y. Saito and P. Verma, Polarization-controlled Raman microscopy and nanoscopy, J. Phys. Chem. Lett. 3(10), 1295 (2012)

    Article  Google Scholar 

  73. M. D. Sonntag, E. A. Pozzi, N. Jiang, M. C. Hersam, and R. P. Van Duyne, Recent advances in tip-enhanced Raman spectroscopy, J. Phys. Chem. Lett. 5(18), 3125 (2014)

    Article  Google Scholar 

  74. P. Verma, T. Ichimura, T. Yano, Y. Saito, and S. Kawata, Nano-imaging through tip-enhanced Raman spectroscopy: Stepping beyond the classical limits, Laser Photonics Rev. 4(4), 548 (2010)

    Article  Google Scholar 

  75. T. Mino, Y. Saito, H. Yoshida, S. Kawata, and P. Verma, Molecular orientation analysis of organic thin films by z-polarization Raman microscope, J. Raman Spectrosc. 43(12), 2029 (2012)

    Article  ADS  Google Scholar 

  76. H. A. Bethe, Theory of diffraction by small holes, Phys. Rev. 66(7–8), 163 (1944)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  77. L. Novotny and C. Hafner, Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function, Phys. Rev. E 50(5), 4094 (1994)

    Article  ADS  Google Scholar 

  78. R. D. Grober, T. Rutherford, and T. D. Harris, Modal approximation for the electromagnetic field of a near-field optical probe, Appl. Opt. 35(19), 3488 (1996)

    Article  ADS  Google Scholar 

  79. Th. Huser, L. Novotny, Th. Lacoste, R. Eckert, and H. Heinzelmann, Observation and analysis of near-field optical diffraction, J. Opt. Soc. Am. A 16(1), 141 (1999)

    Article  ADS  Google Scholar 

  80. T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, A single gold particle as a probe for apertureless scanning near-field optical microscopy, Journal of Microscopy-Oxford 202(1), 72 (2001)

    Article  MathSciNet  Google Scholar 

  81. M. I. Stockman, Nanofocusing of optical energy in tapered plasmonic waveguides, Phys. Rev. Lett. 93(13), 137404 (2004)

    Article  ADS  Google Scholar 

  82. F. Huth, M. Schnell, J. Wittborn, N. Ocelic, and R. Hillenbrand, Infrared-spectroscopic nanoimaging with a thermal source, Nat. Mater. 10(5), 352 (2011)

    Article  ADS  Google Scholar 

  83. J. Stadler, T. Schmid, and R. Zenobi, Nanoscale chemical imaging using top-illumination tip-enhanced Raman spectroscopy, Nano Lett. 10(11), 4514 (2010)

    Article  ADS  Google Scholar 

  84. A. Weber-Bargioni, A. Schwartzberg, M. Cornaglia, A. Ismach, J. J. Urban, Y. Pang, R. Gordon, J. Bokor, M. B. Salmeron, D. F. Ogletree, P. Ashby, S. Cabrini, and P. J. Schuck, Hyperspectral nanoscale imaging on dielectric substrates with coaxial optical antenna scan probes, Nano Lett. 11(3), 1201 (2011)

    Article  ADS  Google Scholar 

  85. P. G. Gucciardi, M. Lopes, R. Déturche, C. Julien, D. Barchiesi, and M. L. de la Chapelle, Light depolarization induced by metallic tips in apertureless near-field optical microscopy and tip-enhanced Raman spectroscopy, Nanotechnology 19(21), 215702 (2008)

    Article  ADS  Google Scholar 

  86. R. Ossikovski, Q. Nguyen, and G. Picardi, Simple model for the polarization effects in tip-enhanced Raman spectroscopy, Phys. Rev. B 75(4), 045412 (2007)

    Article  ADS  Google Scholar 

  87. T. Schmid, L. Opilik, C. Blum, and R. Zenobi, Nanoscale chemical imaging using tip-enhanced Raman spectroscopy: A critical review, Angew. Chem. Int. Ed. 52(23), 5940 (2013)

    Article  Google Scholar 

  88. T. Schmid, B. S. Yeo, G. Leong, J. Stadler, and R. Zenobi, Performing tip-enhanced Raman spectroscopy in liquids, J. Raman Spectrosc. 40(10), 1392 (2009)

    Article  ADS  Google Scholar 

  89. A. Tarun, N. Hayazawa, and S. Kawata, Tip-enhanced Raman spectroscopy for nanoscale strain characterization, Anal. Bioanal. Chem. 394(7), 1775 (2009)

    Article  Google Scholar 

  90. Y. Ogawa, T. Toizumi, F. Minami, and A. V. Baranov, Nanometer-scale mapping of the strain and Ge content of Ge/Si quantum dots using enhanced Raman scattering by the tip of an atomic force microscope, Phys. Rev. B 83(8), 081302 (2011)

    Article  ADS  Google Scholar 

  91. S. Nakashima, T. Mitani, M. Ninomiya, and K. Matsumoto, Raman investigation of strain in Si/SiGe heterostructures: Precise determination of the strain-shift coefficient of Si bands, J. Appl. Phys. 99(5), 053512 (2006)

    Article  ADS  Google Scholar 

  92. R. M. Stöckle, Y. D. Suh, V. Deckert, and R. Zenobi, Nanoscale chemical analysis by tip-enhanced Raman spectroscopy, Chem. Phys. Lett. 318(1–3), 131 (2000)

    Article  ADS  Google Scholar 

  93. Y. D. Suh, R. M. Soeckle, V. Deckert, and R. Zenobi, Abstracts of Papers of the American Chemical Society 221, U91 (2001)

    Google Scholar 

  94. E. Poliani, M. R. Wagner, J. S. Reparaz, M. Mandl, M. Strassburg, X. Kong, A. Trampert, C. M. Sotomayor Torres, A. Hoffmann, and J. Maultzsch, Nanoscale imaging of InN segregation and polymorphism in single vertically aligned InGaN/GaN multi quantum well nanorods by tip-enhanced Raman scattering, Nano Lett. 13(7), 3205 (2013)

    Article  ADS  Google Scholar 

  95. S. Berweger, J. M. Atkin, R. L. Olmon, and M. B. Raschke, Adiabatic tip-plasmon focusing for nano-Raman spectroscopy, J. Phys. Chem. Lett. 1(24), 3427 (2010)

    Article  Google Scholar 

  96. N. Hayazawa, M. Motohashi, Y. Saito, H. Ishitobi, A. Ono, T. Ichimura, P. Verma, and S. Kawata, Visualization of localized strain of a crystalline thin layer at the nanoscale by tip-enhanced Raman spectroscopy and microscopy, J. Raman Spectrosc. 38(6), 684 (2007)

    Article  ADS  Google Scholar 

  97. C. Chen, N. Hayazawa, and S. Kawata, A 1.7 nm resolution chemical analysis of carbon nanotubes by tip-enhanced Raman imaging in the ambient, Nat. Commun. 5, 3312 (2014)

    ADS  Google Scholar 

  98. T. Yano, P. Verma, Y. Saito, T. Ichimura, and S. Kawata, Pressure-assisted tip-enhanced Raman imaging at a resolution of a few nanometres, Nat. Photonics 3(8), 473 (2009)

    Article  ADS  Google Scholar 

  99. R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, Chemical mapping of a single molecule by plasmon-enhanced Raman scattering, Nature 498(7452), 82 (2013)

    Article  ADS  Google Scholar 

  100. T. X. Huang, S. C. Huang, M. H. Li, Z. C. Zeng, X. Wang, and B. Ren, Tip-enhanced Raman spectroscopy: Tip-related issues, Anal. Bioanal. Chem. 407(27), 8177 (2015)

    Article  Google Scholar 

  101. X. Zheng, C. Zong, M. Xu, X. Wang, and B. Ren, Raman imaging from microscopy to nanoscopy, and to macroscopy, Small 11(28), 3395 (2015)

    Article  Google Scholar 

  102. R. Beams, L. G. Cancado, S. H. Oh, A. Jorio, and L. Novotny, Spatial coherence in near-field Raman scattering, Phys. Rev. Lett. 113(18), 186101 (2014)

    Article  Google Scholar 

  103. F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons, Nat. Nanotechnol. 5(1), 67 (2010)

    Article  ADS  Google Scholar 

  104. A. Hartschuh, E. J. Sanchez, X. S. Xie, and L. Novotny, High-resolution near-field Raman microscopy of singlewalled carbon nanotubes, Phys. Rev. Lett. 90(9), 095503 (2003)

    Article  ADS  Google Scholar 

  105. M. Brehm, T. Taubner, R. Hillenbrand, and F. Keilmann, Infrared spectroscopic mapping of single nanoparticles and viruses at nanoscale resolution, Nano Lett. 6(7), 1307 (2006)

    Article  ADS  Google Scholar 

  106. F. Huth, A. Govyadinov, S. Amarie, W. Nuansing, F. Keilmann, and R. Hillenbrand, Nano-FTIR absorption spectroscopy of molecular fingerprints at 20 nm spatial resolution, Nano Lett. 12(8), 3973 (2012)

    Article  ADS  Google Scholar 

  107. A. C. Jones and M. B. Raschke, Thermal infrared near-field spectroscopy, Nano Lett. 12(3), 1475 (2012)

    Article  ADS  Google Scholar 

  108. I. Amenabar, S. Poly, W. Nuansing, E. H. Hubrich, A. A. Govyadinov, F. Huth, R. Krutokhvostov, L. Zhang, M. Knez, J. Heberle, A. M. Bittner, and R. Hillenbrand, Structural analysis and mapping of individual protein complexes by infrared nanospectroscopy, Nat. Commun. 4, 2890 (2013)

    Article  ADS  Google Scholar 

  109. H. A. Bechtel, E. A. Muller, R. L. Olmon, M. C. Martin, and M. B. Raschke, Ultrabroadband infrared nanospectroscopic imaging, Proc. Natl. Acad. Sci. USA 111(20), 7191 (2014)

    Article  ADS  Google Scholar 

  110. S. Mastel, A. A. Govyadinov, T. V. A. G. de Oliveira, I. Amenabar, and R. Hillenbrand, Nanoscale-resolved chemical identification of thin organic films using infrared nearfield spectroscopy and standard Fourier transform infrared references, Appl. Phys. Lett. 106(2), 023113 (2015)

    Article  ADS  Google Scholar 

  111. B. Pollard, E. A.Muller, K. Hinrichs, and M. B. Raschke, Vibrational nano-spectroscopic imaging correlating structure with intermolecular coupling and dynamics, Nat. Commun. 5, 3587 (2014)

    Article  ADS  Google Scholar 

  112. C. Höppener and L. Novotny, Exploiting the light–metal interaction for biomolecular sensing and imaging, Q. Rev. Biophys. 45(02), 209 (2012)

    Article  Google Scholar 

  113. B. D. Mangum, C. Mu, and J. M. Gerton, Resolving single fluorophores within dense ensembles: Contrast limits of tipenhanced fluorescence microscopy, Opt. Express 16(9), 6183 (2008)

    Article  ADS  Google Scholar 

  114. B. D. Mangum, E. Shafran, C. Mu, and J. M. Gerton, Threedimensional mapping of near-field interactions via singlephoton tomography, Nano Lett. 9(10), 3440 (2009)

    Article  ADS  Google Scholar 

  115. L. Neumann, Y. J. Pang, A. Houyou, M. L. Juan, R. Gordon, and N. F. van Hulst, Extraordinary optical transmission brightens near-field fiber probe, Nano Lett. 11(2), 355 (2011)

    Article  ADS  Google Scholar 

  116. M. A. Bopp, A. J. Meixner, G. Tarrach, I. Zschokke-Gränacher, and L. Novotny, Direct imaging single molecule diffusion in a solid polymer host, Chem. Phys. Lett. 263(6), 721 (1996)

    Article  ADS  Google Scholar 

  117. T. W. Johnson, Z. J. Lapin, R. Beams, N. C. Lindquist, S. G. Rodrigo, L. Novotny, and S. H. Oh, Highly reproducible near-field optical imaging with sub-20-nm resolution based on template-stripped gold pyramids, ACS Nano 6(10), 9168 (2012)

    Article  Google Scholar 

  118. C. C. Neacsu, G. A. Reider, and M. B. Raschke, Secondharmonic generation from nanoscopic metal tips: Symmetry selection rules for single asymmetric nanostructures, Phys. Rev. B 71(20), 201402 (2005)

    Article  ADS  Google Scholar 

  119. A. L. Demming, F. Festy, and D. Richards, Plasmon resonances on metal tips: Understanding tip-enhanced Raman scattering, J. Chem. Phys. 122(18), 184716 (2005)

    Article  ADS  Google Scholar 

  120. D. Mehtani, N. Lee, R. D. Hartschuh, A. Kisliuk, M. D. Foster, A. P. Sokolov, and J. F. Maguire, Nano-Raman spectroscopy with side-illumination optics, J. Raman Spectrosc. 36(11), 1068 (2005)

    Article  ADS  Google Scholar 

  121. J. A. Veerman, M. F. Garcia-Parajo, L. Kuipers, and N. F. Van Hulst, Single molecule mapping of the optical field distribution of probes for near-field microscopy, Journal of Microscopy 194(2–3), 477 (1999)

    Article  Google Scholar 

  122. B. Sick, B. Hecht, U. P. Wild, and L. Novotny, Probing confined fields with single molecules and vice versa, Journal of Microscopy 202(2), 365 (2001)

    Article  MathSciNet  Google Scholar 

  123. K. G. Lee, H. W. Kihm, K. J. Ahn, J. S. Ahn, Y. D. Suh, C. Lienau, and D. S. Kim, Vector field mapping of local polarization using gold nanoparticle functionalized tips: Independence of the tip shape, Opt. Express 15(23), 14993 (2007)

    Article  ADS  Google Scholar 

  124. C. Huang, A. Bouhelier, G. Colas des Francs, A. Bruyant, A. Guenot, E. Finot, J. C. Weeber, and A. Dereux, Gain, detuning, and radiation patterns of nanoparticle optical antennas, Phys. Rev. B 78(15), 155407 (2008)

    Article  ADS  Google Scholar 

  125. M. A. Lieb, J. M. Zavislan, and L. Novotny, Single-molecule orientations determined by direct emission pattern imaging, J. Opt. Soc. Am. B 21(6), 1210 (2004)

    Article  ADS  Google Scholar 

  126. T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. Van Hulst, Optical antennas direct single-molecule emission, Nat. Photonics 2(4), 234 (2008)

    Article  Google Scholar 

  127. S. Kuhn, G. Mori, M. Agio, and V. Sandoghdar, Modification of single molecule fluorescence close to a nanostructure: Radiation pattern, spontaneous emission and quenching, Mol. Phys. 106(7), 893 (2008)

    Article  ADS  Google Scholar 

  128. M. Böhmler, N. Hartmann, C. Georgi, F. Hennrich, A. A. Green, M. C. Hersam, and A. Hartschuh, Enhancing and redirecting carbon nanotube photoluminescence by an optical antenna, Opt. Express 18(16), 16443 (2010)

    Article  ADS  Google Scholar 

  129. T. H. Taminiau, S. Karaveli, N. F. van Hulst, and R. Zia, Quantifying the magnetic nature of light emission, Nat. Commun. 3, 979 (2012)

    Article  ADS  Google Scholar 

  130. A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, Unidirectional emission of a quantum dot coupled to a nanoantenna, Science 329(5994), 930 (2010)

    Article  ADS  Google Scholar 

  131. M. Terrones, Science and technology of the twenty-first century: Synthesis, properties, and applications of carbon nanotubes, Annu. Rev. Mater. Res. 33(1), 419 (2003)

    Article  ADS  Google Scholar 

  132. M. S. Dresselhaus, A. Jorio, and R. Saito, Characterizing graphene, graphite, and carbon nanotubes by Raman spectroscopy, Ann. Rev. Condens. Matter Phys. 1, 89 (2010)

    Article  ADS  Google Scholar 

  133. X. Zhang, W. Zhang, L. Liu, and Z. X. Shen, Surfaceenhanced Raman of Z-vibration mode in single-walled and multi-walled carbon nanotube, Chem. Phys. Lett. 372(3–4), 497 (2003)

    Article  ADS  Google Scholar 

  134. M. S. Dresselhaus, G. Dresselhaus, R. Saito, and A. Jorio, Raman spectroscopy of carbon nanotubes, Phys. Rep. 409(2), 47 (2005)

    Article  ADS  Google Scholar 

  135. M. S. Dresselhaus, G. Dresselhaus, and A. Jorio, Raman spectroscopy of carbon nanotubes in 1997 and 2007, J. Phys. Chem. C 111(48), 17887 (2007)

    Article  Google Scholar 

  136. C. Fantini, A. Jorio, M. Souza, M. S. Strano, M. S. Dresselhaus, and M. A. Pimenta, Optical transition energies for carbon nanotubes from resonant Raman spectroscopy: Environment and temperature effects, Phys. Rev. Lett. 93(14), 147406 (2004)

    Article  ADS  Google Scholar 

  137. C. Fantini, A. Jorio, M. Souza, R. Saito, G. G. Samsonidze, M. S. Dresselhaus, and M. A. Pimenta, Steplike dispersion of the intermediate-frequency Raman modes in semiconducting and metallic carbon nanotubes, Phys. Rev. B 72(8), 085446 (2005)

    Article  ADS  Google Scholar 

  138. R. Saito, T. Takeya, T. Kimura, G. Dresselhaus, and M. S. Dresselhaus, Finite-size effect on the Raman spectra of carbon nanotubes, Phys. Rev. B 59(3), 2388 (1999)

    Article  ADS  Google Scholar 

  139. K. Sbai, A. Rahmani, H. Chadli, and J. L. Sauvajol, Finitesize effect on the Raman-active modes of double-walled carbon nanotubes, J. Phys.: Condens. Matter 20(1), 015204 (2008)

    ADS  Google Scholar 

  140. M. Mitra, and S. Gopalakrishnan, Vibrational characteristics of single-walled carbon-nanotube: Time and frequency domain analysis, J. Appl. Phys. 101(11), 114320 (2007)

    Article  ADS  Google Scholar 

  141. G. Picardi, M. Chaigneau, and R. Ossikovski, High resolution probing of multi wall carbon nanotubes by Tip Enhanced Raman Spectroscopy in gap-mode, Chem. Phys. Lett. 469(1–3), 161 (2009)

    Article  ADS  Google Scholar 

  142. I. O. Maciel, N. Anderson, M. A. Pimenta, A. Hartschuh, H. H. Qian, M. Terrones, H. Terrones, J. Campos-Delgado, A. M. Rao, L. Novotny, and A. Jorio, Electron and phonon renormalization near charged defects in carbon nanotubes, Nat. Mater. 7(11), 878 (2008)

    Article  ADS  Google Scholar 

  143. N. Anderson, A. Hartschuh, and L. Novotny, Chirality changes in carbon nanotubes studied with near-field raman spectroscopy, Nano Lett. 7(3), 577 (2007)

    Article  ADS  Google Scholar 

  144. Y. Saito, P. Verma, K. Masui, Y. Inouye, and S. Kawata, Nano-scale analysis of graphene layers by tip-enhanced nearfield Raman spectroscopy, J. Raman Spectrosc. 40(10), 1434 (2009)

    Article  ADS  Google Scholar 

  145. R. H. Rickman and P. R. Dunstan, Enhancement of lattice defect signatures in graphene and ultrathin graphite using tip-enhanced Raman spectroscopy, J. Raman Spectrosc. 45(1), 15 (2014)

    Article  ADS  Google Scholar 

  146. R. Beams, L. G. Cancado, A. Jorio, A. N. Vamivakas, and L. Novotny, Tip-enhanced Raman mapping of local strain in graphene, Nanotechnology 26(17), 175702 (2015)

    Article  ADS  Google Scholar 

  147. A. Shiotari, T. Kumagai, and M. Wolf, Tip-enhanced Raman spectroscopy of graphene nanoribbons on Au(111), J. Phys. Chem. C 118(22), 11806 (2014)

    Article  Google Scholar 

  148. Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. C. Neto, C. N. Lau, F. Keilmann, and D. N. Basov, Gate-tuning of graphene plasmons revealed by infrared nano-imaging, Nature 487(7405), 82 (2012)

    ADS  Google Scholar 

  149. J. N. Chen, M. Badioli, P. Alonso-Gonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovic, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. G. de Abajo, R. Hillenbrand, and F. H. L. Koppens, Optical nano-imaging of gate-tunable graphene plasmons, Nature 487(7405), 77 (2012)

    ADS  Google Scholar 

  150. P. Alonso-Gonzalez, A. Y. Nikitin, F. Golmar, A. Centeno, A. Pesquera, S. Velez, J. Chen, G. Navickaite, F. Koppens, A. Zurutuza, F. Casanova, L. E. Hueso, and R. Hillenbrand, Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns, Science 344(6190), 1369 (2014)

    Article  ADS  Google Scholar 

  151. A. Woessner, M. B. Lundeberg, Y. Gao, A. Principi, P. Alonso-González, M. Carrega, K. Watanabe, T. Taniguchi, G. Vignale, M. Polini, J. Hone, R. Hillenbrand, and F. H. L. Koppens, Highly confined low-loss plasmons in graphene–boron nitride heterostructures, Nat. Mater. 14(4), 421 (2015)

    Article  ADS  Google Scholar 

  152. Z. Shi, X. Hong, H. A. Bechtel, B. Zeng, M. C. Martin, K. Watanabe, T. Taniguchi, Y. R. Shen, and F. Wang, Observation of a Luttinger-liquid plasmon in metallic single-walled carbon nanotubes, Nat. Photonics 9(8), 515 (2015)

    Article  ADS  Google Scholar 

  153. M. Wagner, Z. Fei, A. S. McLeod, A. S. Rodin, W. Bao, E. G. Iwinski, Z. Zhao, M. Goldflam, M. Liu, G. Dominguez, M. Thiemens, M. M. Fogler, A. H. Castro Neto, C. N. Lau, S. Amarie, F. Keilmann, and D. N. Basov, Ultrafast and nanoscale plasmonic phenomena in exfoliated graphene revealed by infrared pump–probe nanoscopy, Nano Lett. 14(2), 894 (2014)

    Article  ADS  Google Scholar 

  154. D. N. Basov, M. M. Fogler, A. Lanzara, F. Wang, and Y. Zhang, Colloquium: Graphene spectroscopy, Rev. Mod. Phys. 86(3), 959 (2014)

    Article  ADS  Google Scholar 

  155. N. C. Lindquist, P. Nagpal, K. M. McPeak, D. J. Norris, and S. H. Oh, Engineering metallic nanostructures for plasmonics and nanophotonics, Rep. Prog. Phys. 75(3), 036501 (2012)

    Article  ADS  Google Scholar 

  156. M. Fleischer, A. Weber-Bargioni, M. V. P. Altoe, A. M. Schwartzberg, P. J. Schuck, S. Cabrini, and D. P. Kern, Gold nanocone near-field scanning optical microscopy probes, ACS Nano 5(4), 2570 (2011)

    Article  Google Scholar 

  157. P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, Resonant optical antennas, Science 308(5728), 1607 (2005)

    Article  ADS  Google Scholar 

  158. P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, Improving the mismatch between light and nanoscale objects with gold Bowtie nanoantennas, Phys. Rev. Lett. 94(1), 017402 (2005)

    Article  ADS  Google Scholar 

  159. D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, Gap-dependent optical coupling of single “Bowtie” nanoantennas resonant in the visible, Nano Lett. 4(5), 957 (2004)

    Article  ADS  Google Scholar 

  160. P. Biagioni, J. S. Huang, and B. Hecht, Nanoantennas for visible and infrared radiation, Rep. Prog. Phys. 75(2), 024402 (2012)

    Article  ADS  Google Scholar 

  161. J. N. Farahani, H. J. Eisler, D. W. Pohl, M. Pavius, P. Fluckiger, P. Gasser, and B. Hecht, Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy, Nanotechnology 18(12), 125506 (2007)

    Article  ADS  Google Scholar 

  162. A. Weber-Bargioni, A. Schwartzberg, M. Schmidt, B. Harteneck, D. F. Ogletree, P. J. Schuck, and S. Cabrini, Functional plasmonic antenna scanning probes fabricated by induceddeposition mask lithography, Nanotechnology 21(6), 065306 (2010)

    Article  ADS  Google Scholar 

  163. M. Melli, A. Polyakov, D. Gargas, C. Huynh, L. Scipioni, W. Bao, D. F. Ogletree, P. J. Schuck, S. Cabrini, and A. Weber-Bargioni, Reaching the theoretical resonance quality factor limit in coaxial plasmonic nanoresonators fabricated by helium ion lithography, Nano Lett. 13(6), 2687 (2013)

    Article  ADS  Google Scholar 

  164. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Single-layer MoS2 transistors, Nat. Nanotechnol. 6(3), 147 (2011)

    Article  ADS  Google Scholar 

  165. Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Electronics and optoelectronics of twodimensional transition metal dichalcogenides, Nat. Nanotechnol. 7(11), 699 (2012)

    Article  ADS  Google Scholar 

  166. Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, and H. Zhang, Single-layer MoS2 phototransistors, ACS Nano 6(1), 74 (2012)

    Article  Google Scholar 

  167. J. S. Ross, P. Klement, A. M. Jones, N. J. Ghimire, J. Yan, D. G. Mandrus, T. Taniguchi, K. Watanabe, K. Kitamura, W. Yao, D. H. Cobden, and X. Xu, Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p–n junctions, Nat. Nanotechnol. 9(4), 268 (2014)

    Article  ADS  Google Scholar 

  168. W. Wu, L. Wang, Y. Li, F. Zhang, L. Lin, S. Niu, D. Chenet, X. Zhang, Y. Hao, T. F. Heinz, J. Hone, and Z. L. Wang, Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics, Nature 514(7523), 470 (2014)

    Article  ADS  Google Scholar 

  169. B. W. H. Baugher, H. O. H. Churchill, Y. Yang, and P. Jarillo-Herrero, Optoelectronic devices based on electrically tunable p–n diodes in a monolayer dichalcogenide, Nat. Nanotechnol. 9(4), 262 (2014)

    Article  ADS  Google Scholar 

  170. F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, Photodetectors based on graphene, other two-dimensional materials and hybrid systems, Nat. Nanotechnol. 9(10), 780 (2014)

    Article  ADS  Google Scholar 

  171. G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S. K. Banerjee, and L. Colombo, Electronics based on two-dimensional materials, Nat. Nanotechnol. 9(10), 768 (2014)

    Article  ADS  Google Scholar 

  172. F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, Two-dimensional material nanophotonics, Nat. Photonics 8(12), 899 (2014)

    Article  ADS  Google Scholar 

  173. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene, Nature 438(7065), 197 (2005)

    Article  ADS  Google Scholar 

  174. Y. B. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Experimental observation of the quantum Hall effect and Berry’s phase in graphene, Nature 438(7065), 201 (2005)

    Article  ADS  Google Scholar 

  175. K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Atomically thin MoS2: A new direct-gap semiconductor, Phys. Rev. Lett. 105(13), 136805 (2010)

    Article  ADS  Google Scholar 

  176. A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, Emerging photoluminescence in monolayer MoS2, Nano Lett. 10(4), 1271 (2010)

    Article  ADS  Google Scholar 

  177. A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. Li, O. B. Aslan, D. R. Reichman, M. S. Hybertsen, and T. F. Heinz, Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2, Phys. Rev. Lett. 113(7), 076802 (2014)

    Article  ADS  Google Scholar 

  178. Z. Ye, T. Cao, K. O’Brien, H. Zhu, X. Yin, Y. Wang, S. G. Louie, and X. Zhang, Probing excitonic dark states in singlelayer tungsten disulphide, Nature 513(7517), 214 (2014)

    Article  ADS  Google Scholar 

  179. X. Xu, W. Yao, D. Xiao, and T. F. Heinz, Spin and pseudospins in layered transition metal dichalcogenides, Nat. Phys. 10(5), 343 (2014)

    Article  Google Scholar 

  180. A. K. Geim and I. V. Grigorieva, Van der Waals heterostructures, Nature 499(7459), 419 (2013)

    Article  Google Scholar 

  181. S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutierrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, Progress, challenges, and opportunities in two-dimensional materials beyond graphene, ACS Nano 7(4), 2898 (2013)

    Article  Google Scholar 

  182. K. F. Mak, K. He, C. Lee, G. H. Lee, J. Hone, T. F. Heinz, and J. Shan, Tightly bound trions in monolayer MoS2, Nat. Mater. 12(3), 207 (2013)

    Article  ADS  Google Scholar 

  183. C. Zhang, A. Johnson, C. L. Hsu, L. J. Li, and C. K. Shih, Direct imaging of band profile in single layer MoS2 on graphite: Quasiparticle energy gap, metallic edge states, and edge band bending, Nano Lett. 14(5), 2443 (2014)

    Article  ADS  Google Scholar 

  184. M. M. Ugeda, A. J. Bradley, S. F. Shi, F. H. da Jornada, Y. Zhang, D. Y. Qiu, W. Ruan, S. K. Mo, Z. Hussain, Z. X. Shen, F. Wang, S. G. Louie, and M. F. Crommie, Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor, Nat. Mater. 13(12), 1091 (2014)

    Article  ADS  Google Scholar 

  185. W. Zhu, T. Low, Y. H. Lee, H. Wang, D. B. Farmer, J. Kong, F. Xia, and P. Avouris, Electronic transport and device prospects of monolayer molybdenum disulphide grown by chemical vapour deposition, Nat. Commun. 5, 3087 (2014)

    ADS  Google Scholar 

  186. J. A. Schuller, S. Karaveli, T. Schiros, K. He, S. Yang, I. Kymissis, J. Shan, and R. Zia, Orientation of luminescent excitons in layered nanomaterials, Nat. Nanotechnol. 8(4), 271 (2013)

    Article  ADS  Google Scholar 

  187. D. F. Ogletree, P. J. Schuck, A. F. Weber-Bargioni, N. J. Borys, S. Aloni, W. Bao, S. Barja, J. Lee, M. Melli, K. Munechika, S. Whitelam, and S. Wickenburg, Revealing optical properties of reduced-dimensionality materials at relevant length scales, Adv. Mater. 27(38), 5693 (2015)

    Article  Google Scholar 

  188. Y. Abate, S. Gamage, L. Zhen, S. B. Cronin, H. Wang, V. Babicheva, M. H. Javani, and M. I. Stockman, Nanoscopy reveals metallic black phosphorus, arXiv: 1506.05431

  189. Y. Lee, S. Park, H. Kim, G. H. Han, Y. H. Lee, and J. Kim, Characterization of the structural defects in CVD-grown monolayered MoS2 using near-field photoluminescence imaging, Nanoscale 7(28), 11909 (2015)

    Article  ADS  Google Scholar 

  190. Y. Kang, S. Najmaei, Z. Liu, Y. Bao, Y. Wang, X. Zhu, N. J. Halas, P. Nordlander, P. M. Ajayan, J. Lou, and Z. Fang, Plasmonic hot electron induced structural phase transition in a MoS2 monolayer, Adv. Mater. 26(37), 6467 (2014)

    Article  Google Scholar 

  191. W. Bao, M. Melli, N. Caselli, F. Riboli, D. S. Wiersma, M. Staffaroni, H. Choo, D. F. Ogletree, S. Aloni, J. Bokor, S. Cabrini, F. Intonti, M. B. Salmeron, E. Yablonovitch, P. J. Schuck, and A. Weber-Bargioni, Mapping local charge recombination heterogeneity by multidimensional nanospectroscopic imaging, Science 338(6112), 1317 (2012)

    Article  ADS  Google Scholar 

  192. W. Bao, M. Staffaroni, J. Bokor, M. B. Salmeron, E. Yablonovitch, S. Cabrini, A. Weber-Bargioni, and P. J. Schuck, Plasmonic near-field probes: A comparison of the campanile geometry with other sharp tips, Opt. Express 21(7), 8166 (2013)

    Article  ADS  Google Scholar 

  193. W. Bao, N. J. Borys, C. Ko, J. Suh, W. Fan, A. Thron, Y. Zhang, A. Buyanin, J. Zhang, S. Cabrini, P. D. Ashby, A. Weber-Bargioni, S. Tongay, S. Aloni, D. F. Ogletree, J. Wu, M. B. Salmeron, and P. J. Schuck, Visualizing nanoscale excitonic relaxation properties of disordered edges and grain boundaries in monolayer molybdenum disulfide, Nat. Commun. 6, 7993 (2015)

    Article  ADS  Google Scholar 

  194. X. Cui, G. H. Lee, Y. D. Kim, G. Arefe, P. Y. Huang, C. H. Lee, D. A. Chenet, X. Zhang, L. Wang, F. Ye, F. Pizzocchero, B. S. Jessen, K. Watanabe, T. Taniguchi, D. A. Muller, T. Low, P. Kim, and J. Hone, Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform, Nat. Nanotechnol. 10(6), 534 (2015)

    Article  ADS  Google Scholar 

  195. E. Devaux, A. Dereux, E. Bourillot, J. C. Weeber, Y. Lacroute, J. P. Goudonnet, and C. Girard, Local detection of the optical magnetic field in the near zone of dielectric samples, Phys. Rev. B 62(15), 10504 (2000)

    Article  ADS  Google Scholar 

  196. Z. H. Kim and S. R. Leone, Polarization-selective mapping of near-field intensity and phase around gold nanoparticles using apertureless near-field microscopy, Opt. Express 16(3), 1733 (2008)

    Article  ADS  Google Scholar 

  197. D. S. Kim, J. Heo, S. H. Ahn, S. W. Han, W. S. Yun, and Z. H. Kim, Real-space mapping of the strongly coupled plasmons of nanoparticle dimers, Nano Lett. 9(10), 3619 (2009)

    Article  ADS  Google Scholar 

  198. M. Schnell, A. Garcia-Etxarri, A. J. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, Controlling the near-field oscillations of loaded plasmonic nanoantennas, Nat. Photonics 3(5), 287 (2009)

    Article  ADS  Google Scholar 

  199. M. Schnell, P. Alonso-Gonzalez, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, Nanofocusing of mid-infrared energy with tapered transmission lines, Nat. Photonics 5(5), 283 (2011)

    Article  ADS  Google Scholar 

  200. R. L. Olmon, M. Rang, P. M. Krenz, B. A. Lail, L. V. Saraf, G. D. Boreman, and M. B. Raschke, Determination of electric-field, magnetic-field, and electric-current distributions of infrared optical antennas: A near-field optical vector network analyzer, Phys. Rev. Lett. 105(16), 167403 (2010)

    Article  ADS  Google Scholar 

  201. R. L. Olmon, P. M. Krenz, A. C. Jones, G. D. Boreman, and M. B. Raschke, Near-field imaging of optical antenna modes in the mid-infrared, Opt. Express 16(25), 20295 (2008)

    Article  ADS  Google Scholar 

  202. N. Yu, E. Cubukcu, L. Diehl, M. A. Belkin, K. B. Crozier, F. Capasso, D. Bour, S. Corzine, and G. Hofler, Plasmonic quantum cascade laser antenna, Appl. Phys. Lett. 91(17), 173113 (2007)

    Article  ADS  Google Scholar 

  203. L. Novotny and C. Henkel, Van der Waals versus optical interaction between metal nanoparticles, Opt. Lett. 33(9), 1029 (2008)

    Article  ADS  Google Scholar 

  204. J. Dorfmüller, D. Dregely, M. Esslinger, W. Khunsin, R. Vogelgesang, K. Kern, and H. Giessen, Near-field dynamics of optical Yagi-Uda nanoantennas, Nano Lett. 11(7), 2819 (2011)

    Article  Google Scholar 

  205. T. Zentgraf, J. Dorfmuller, C. Rockstuhl, C. Etrich, R. Vogelgesang, K. Kern, T. Pertsch, F. Lederer, and H. Giessen, Amplitude-and phase-resolved optical near fields of splitring-resonator-based metamaterials, Opt. Lett. 33(8), 848 (2008)

    Article  ADS  Google Scholar 

  206. B. Deutsch, R. Hillenbrand, and L. Novotny, Visualizing the optical interaction tensor of a gold nanoparticle pair, Nano Lett. 10(2), 652 (2010)

    Article  ADS  Google Scholar 

  207. H. A. Bechtel, J. P. Camden, Z. H. Kim, D. J. A. Brown, and R. N. Zare, Abstracts of Papers of the American Chemical Society 228, U275 (2004)

    Google Scholar 

  208. P. Alonso-Gonzalez, M. Schnell, P. Sarriugarte, H. Sobhani, C. Wu, N. Arju, A. Khanikaev, F. Golmar, P. Albella, L. Arzubiaga, F. Casanova, L. E. Hueso, P. Nordlander, G. Shvets, and R. Hillenbrand, Real-space mapping of fano interference in plasmonic metamolecules, Nano Lett. 11(9), 3922 (2011)

    Article  ADS  Google Scholar 

  209. P. Uebel, M. A. Schmidt, H. W. Lee, and P. S. J. Russell, Polarisation-resolved near-field mapping of a coupled gold nanowire array, Opt. Express 20(27), 28409 (2012)

    Article  ADS  Google Scholar 

  210. S. Mastel, S. E. Grefe, G. B. Cross, A. Taber, S. Dhuey, S. Cabrini, P. J. Schuck, and Y. Abate, Real-space mapping of nanoplasmonic hotspots via optical antenna-gap loading, Appl. Phys. Lett. 101(13), 131102 (2012)

    Article  ADS  Google Scholar 

  211. S. E. Grefe, D. Leiva, S. Mastel, S. D. Dhuey, S. Cabrini, P. J. Schuck, and Y. Abate, Near-field spatial mapping of strongly interacting multiple plasmonic infrared antennas, Phys. Chem. Chem. Phys. 15(43), 18944 (2013)

    Article  Google Scholar 

  212. T. Bauer, S. Orlov, U. Peschel, P. Banzer, and G. Leuchs, Nanointerferometric amplitude and phase reconstruction of tightly focused vector beams, Nat. Photonics 8(1), 23 (2014)

    Article  ADS  Google Scholar 

  213. N. Ocelic, A. Huber, and R. Hillenbrand, Pseudoheterodyne detection for background-free near-field spectroscopy, Appl. Phys. Lett. 89(10), 101124 (2006)

    Article  ADS  Google Scholar 

  214. M. L. M. Balistreri, J. P. Korterik, L. Kuipers, and N. F. van Hulst, Local observations of phase singularities in optical fields in waveguide structures, Phys. Rev. Lett. 85(2), 294 (2000)

    Article  ADS  Google Scholar 

  215. A. Nesci, R. Dandliker, and H. P. Herzig, Quantitative amplitude and phase measurement by use of a heterodyne scanning near-field optical microscope, Opt. Lett. 26(4), 208 (2001)

    Article  ADS  Google Scholar 

  216. E. Verhagen, M. Spasenovic, A. Polman, and L. Kuipers, Nanowire plasmon excitation by adiabatic mode transformation, Phys. Rev. Lett. 102(20), 203904 (2009)

    Article  ADS  Google Scholar 

  217. M. Burresi, D. Diessel, D. Oosten, S. Linden, M. Wegener, and L. Kuipers, Negative-index metamaterials: Looking into the unit cell, Nano Lett. 10(7), 2480 (2010)

    Article  ADS  Google Scholar 

  218. H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, Direct observation of Bloch harmonics and negative phase velocity in photonic crystal waveguides, Phys. Rev. Lett. 94(12), 123901 (2005)

    Article  ADS  Google Scholar 

  219. M. Ayache, M. P. Nezhad, S. Zamek, M. Abashin, and Y. Fainman, Near-field measurement of amplitude and phase in silicon waveguides with liquid cladding, Opt. Lett. 36(10), 1869 (2011)

    Article  ADS  Google Scholar 

  220. M. Burresi, R. J. P. Engelen, A. Opheij, D. van Oosten, D. Mori, T. Baba, and L. Kuipers, Observation of polarization singularities at the nanoscale, Phys. Rev. Lett. 102(3), 033902 (2009)

    Article  ADS  Google Scholar 

  221. N. Rotenberg, T. L. Krijger, B. Feber, M. Spasenovi, F. J. G. de Abajo, and L. Kuipers, Magnetic and electric response of single subwavelength holes, Phys. Rev. B 88(24), 241408 (2013)

    Article  ADS  Google Scholar 

  222. M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, Probing the magnetic field of light at optical frequencies, Science 326(5952), 550 (2009)

    Article  ADS  Google Scholar 

  223. M. Burresi, T. Kampfrath, D. van Oosten, J. C. Prangsma, B. S. Song, S. Noda, and L. Kuipers, Magnetic light-matter interactions in a photonic crystal nanocavity, Phys. Rev. Lett. 105(12), 123901 (2010)

    Article  ADS  Google Scholar 

  224. S. Vignolini, F. Intonti, F. Riboli, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, D. S. Wiersma, and M. Gurioli, Magnetic imaging in photonic crystal microcavities, Phys. Rev. Lett. 105(12), 123902 (2010)

    Article  ADS  Google Scholar 

  225. M. Spasenovi, D. M. Beggs, P. Lalanne, T. F. Krauss, and L. Kuipers, Measuring the spatial extent of individual localized photonic states, Phys. Rev. B 86(15), 155153 (2012)

    Article  ADS  Google Scholar 

  226. S. R. Huisman, G. Ctistis, S. Stobbe, A. P. Mosk, J. L. Herek, A. Lagendijk, P. Lodahl, W. L. Vos, and P. W. H. Pinkse, Measurement of a band-edge tail in the density of states of a photonic-crystal waveguide, Phys. Rev. B 86(15), 155154 (2012)

    Article  ADS  Google Scholar 

  227. D. Denkova, N. Verellen, A. V. Silhanek, V. K. Valev, P. V. Dorpe, and V. V. Moshchalkov, Mapping magnetic nearfield distributions of plasmonic nanoantennas, ACS Nano 7(4), 3168 (2013)

    Article  Google Scholar 

  228. D. Denkova, N. Verellen, A. V. Silhanek, P. Van Dorpe, and V. V. Moshchalkov, Lateral magnetic near-field imaging of plasmonic nanoantennas with increasing complexity, Small 10(10), 1959 (2014)

    Article  Google Scholar 

  229. H. W. Kihm, S. M. Koo, Q. H. Kim, K. Bao, J. E. Kihm, W. S. Bak, S. H. Eah, C. Lienau, H. Kim, P. Nordlander, N. J. Halas, N. K. Park, and D. S. Kim, Bethe-hole polarization analyser for the magnetic vector of light, Nat. Commun. 2, 451 (2011)

    Article  ADS  Google Scholar 

  230. H. W. Kihm, J. Kim, S. Koo, J. Ahn, K. Ahn, K. Lee, N. Park, and D. S. Kim, Optical magnetic field mapping using a subwavelength aperture, Opt. Express 21(5), 5625 (2013)

    Article  ADS  Google Scholar 

  231. B. le Feber, N. Rotenberg, D. M. Beggs, and L. Kuipers, Simultaneous measurement of nanoscale electric and magnetic optical fields, Nat. Photonics 8(1), 43 (2014)

    Article  ADS  Google Scholar 

  232. N. Caselli, F. La China, W. Bao, F. Riboli, A. Gerardino, L. Li, E. H. Linfield, F. Pagliano, A. Fiore, P. J. Schuck, S. Cabrini, A. Weber-Bargioni, M. Gurioli, and F. Intonti, Deep-subwavelength imaging of both electric and magnetic localized optical fields by plasmonic campanile nanoantenna, Sci. Rep. 5, 9606 (2015)

    Article  ADS  Google Scholar 

  233. H. U. Yang, R. L. Olmon, K. S. Deryckx, X. G. Xu, H. A. Bechtel, Y. Xu, B. A. Lail, and M. B. Raschke, Accessing the optical magnetic near-field through Babinet’s principle, ACS Photonics 1(9), 894 (2014)

    Article  Google Scholar 

  234. L. Novotny, R. X. Bian, and X. S. Xie, Theory of nanometric optical tweezers, Phys. Rev. Lett. 79(4), 645 (1997)

    Article  ADS  Google Scholar 

  235. J. Berthelot, S. S. Acimovic, M. L. Juan, M. P. Kreuzer, J. Renger, and R. Quidant, Three-dimensional manipulation with scanning near-field optical nanotweezers, Nat. Nanotechnol. 9(4), 295 (2014)

    Article  ADS  Google Scholar 

  236. R. M. Gelfand, S. Wheaton, and R. Gordon, Cleaved fiber optic double nanohole optical tweezers for trapping nanoparticles, Opt. Lett. 39(22), 6415 (2014)

    Article  ADS  Google Scholar 

  237. J. Jose, S. Kress, A. Barik, L. M. Otto, J. Shaver, T. W. Johnson, Z. J. Lapin, P. Bharadwaj, L. Novotny, and S. H. Oh, Individual template-stripped conductive gold pyramids for tip-enhanced dielectrophoresis, ACS Photonics 1(5), 464 (2014)

    Article  Google Scholar 

  238. N. M. Hameed, A. El Eter, T. Grosjean, and F. I. Baida, Stand-alone three-dimensional optical tweezers based on fibred Bowtie nanoaperture, IEEE Photonics J. 6(4), 4500510 (2014)

    Article  Google Scholar 

  239. S. Wheaton, R. M. Gelfand, and R. Gordon, Probing the Raman-active acoustic vibrations of nanoparticles with extraordinary spectral resolution, Nat. Photonics 9(1), 68 (2015)

    Article  ADS  Google Scholar 

  240. A. A. Al Balushi and R. Gordon, A label-free Untethered approach to single-molecule protein binding kinetics, Nano Lett. 14(10), 5787 (2014)

    Article  ADS  Google Scholar 

  241. H. K. Wickramasinghe, M. Chaigneau, R. Yasukuni, G. Picardi, and R. Ossikovski, Billion-fold increase in tipenhanced Raman signal, ACS Nano 8(4), 3421 (2014)

    Article  Google Scholar 

  242. I. Rajapaksa, K. Uenal, and H. K. Wickramasinghe, Image force microscopy of molecular resonance: A microscope principle, Appl. Phys. Lett. 97(7), 073121 (2010)

    Article  ADS  Google Scholar 

  243. J. Jahng, J. Brocious, D. A. Fishman, F. Huang, X. Li, V. A. Tamma, H. K.Wickramasinghe, and E. O. Potma, Gradient and scattering forces in photoinduced force microscopy, Phys. Rev. B 90(15), 155417 (2014)

    Article  ADS  Google Scholar 

  244. J. Jahng, J. Brocious, D. A. Fishman, S. Yampolsky, D. Nowak, F. Huang, V. A. Apkarian, H. K. Wickramasinghe, and E. O. Potma, Ultrafast pump-probe force microscopy with nanoscale resolution, Appl. Phys. Lett. 106(8), 083113 (2015)

    Article  ADS  Google Scholar 

  245. R. M. Gelfand, A. Bonakdar, O. G. Memis, and H. Mohseni, Super resolution mapping of the near optical field and the gradient optical force, Proc. SPIE 8815, Nanoimaging and Nanospectroscopy 8815, 88150R (2013)

    Google Scholar 

  246. A. Giugni, B. Torre, A. Toma, M. Francardi, M. Malerba, A. Alabastri, R. P. Zaccaria, M. I. Stockman, and E. Di Fabrizio, Hot-electron nanoscopy using adiabatic compression of surface plasmons, Nat. Nanotechnol. 8(11), 845 (2013)

    Article  ADS  Google Scholar 

  247. P. J. Schuck, Nanoimaging: Hot electrons go through the barrier, Nat. Nanotechnol. 8(11), 799 (2013)

    Article  ADS  Google Scholar 

  248. A. O. Govorov, H. Zhang, and Y. K. Gun’ko, Theory of photoinjection of hot plasmonic carriers from metal nanostructures into semiconductors and surface molecules, J. Phys. Chem. C 117(32), 16616 (2013)

    Article  Google Scholar 

  249. A. Polyakov, C. Senft, K. F. Thompson, J. Feng, S. Cabrini, P. J. Schuck, H. A. Padmore, S. J. Peppernick, and W. P. Hess, Plasmon-enhanced photocathode for high brightness and high repetition rate X-ray sources, Phys. Rev. Lett. 110(7), 076802 (2013)

    Article  ADS  Google Scholar 

  250. W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y. T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer, Nat. Photonics 3(4), 220 (2009)

    Article  ADS  Google Scholar 

  251. B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J. L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, Magnetic recording at 1.5 Pb m-2 using an integrated plasmonic antenna, Nat. Photonics 4(7), 484 (2010)

    Article  ADS  Google Scholar 

  252. R. Vincent, H. Marinchio, J. J. Saenz, and R. Carminati, Local control of the excitation of surface plasmon polaritons by near-field magneto-optical Kerr effect, Phys. Rev. B 90(24), 241412 (2014)

    Article  ADS  Google Scholar 

  253. P. S. Keatley, A. Aziz, M. Ali, B. J. Hickey, M. G. Blamire, and R. J. Hicken, Optical characterization of nonlocal spin transfer torque acting on a single nanomagnet, Phys. Rev. B 89(9), 094421 (2014)

    Article  ADS  Google Scholar 

  254. P. Biagioni, J. S. Huang, L. Duo, M. Finazzi, and B. Hecht, Cross resonant optical antenna, Phys. Rev. Lett. 102(25), 256801 (2009)

    Article  ADS  Google Scholar 

  255. Z. Zhang, A. Weber-Bargioni, S. W. Wu, S. Dhuey, S. Cabrini, and P. J. Schuck, Manipulating nanoscale light fields with the asymmetric Bowtie nano-colorsorter, Nano Lett. 9(12), 4505 (2009)

    Article  ADS  Google Scholar 

  256. A. McLeod, A. Weber-Bargioni, Z. Zhang, S. Dhuey, B. Harteneck, J. B. Neaton, S. Cabrini, and P. J. Schuck, Nonperturbative visualization of nanoscale plasmonic field distributions via photon localization microscopy, Phys. Rev. Lett. 106(3), 037402 (2011)

    Article  ADS  Google Scholar 

  257. P. Biagioni, M. Savoini, J. S. Huang, L. Duo, M. Finazzi, and B. Hecht, Near-field polarization shaping by a near-resonant plasmonic cross antenna, Phys. Rev. B 80(15), 153409 (2009)

    Article  ADS  Google Scholar 

  258. D. Lin and J. S. Huang, Slant-gap plasmonic nanoantennas for optical chirality engineering and circular dichroism enhancement, Opt. Express 22(7), 7434 (2014)

    Article  ADS  Google Scholar 

  259. Y. Tang and A. E. Cohen, Enhanced enantioselectivity in excitation of chiral molecules by superchiral light, Science 332(6027), 333 (2011)

    Article  ADS  Google Scholar 

  260. E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, Ultrasensitive detection and characterization of biomolecules using superchiral fields, Nat. Nanotechnol. 5(11), 783 (2010)

    Article  ADS  Google Scholar 

  261. B. le Feber, N. Rotenberg, and L. Kuipers, Nanophotonic control of circular dipole emission, Nat. Commun. 6, 6695 (2015)

    Article  ADS  Google Scholar 

  262. I. Söllner, S. Mahmoodian, S. L. Hansen, L. Midolo, A. Javadi, G. Kiršanskė, T. Pregnolato, H. El-Ella, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, Deterministic photon–emitter coupling in chiral photonic circuits, Nat. Nanotechnol. 10(9), 775 (2015)

    Article  ADS  Google Scholar 

  263. J. Rudge, H. Xu, J. Kolthammer, Y. K. Hong, and B. C. Choi, Sub-nanosecond time-resolved near-field scanning magneto-optical microscope, Rev. Sci. Instrum. 86(2), 023703 (2015)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA

    P. James Schuck, Wei Bao & Nicholas J. Borys

  2. Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720-1760, USA

    Wei Bao

Authors
  1. P. James Schuck
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Wei Bao
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Nicholas J. Borys
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to P. James Schuck.

Additional information

This article is published with open access at www.springer.com/11467 and journal.hep.com.cn/fop

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Schuck, P.J., Bao, W. & Borys, N.J. A polarizing situation: Taking an in-plane perspective for next-generation near-field studies. Front. Phys. 11, 117804 (2016). https://doi.org/10.1007/s11467-015-0526-5

Download citation

  • Received: 15 September 2015

  • Accepted: 18 November 2015

  • Published: 07 January 2016

  • DOI: https://doi.org/10.1007/s11467-015-0526-5

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • near-field optical microscopy
  • nano-optics
  • TERS
  • plasmonics
  • optical antenna
  • 2D materials
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Associated Content

Part of a collection:

Special Topic: Frontiers of Plasmonics

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.