Skip to main content

Advertisement

SpringerLink
  1. Home
  2. Frontiers of Physics
  3. Article
Deviating from the nanorod shape: Shape-dependent plasmonic properties of silver nanorice and nanocarrot structures
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Au nanoring arrays with tunable morphological features and plasmonic resonances

20 March 2021

Shilin Mu, Hongxu Chen, … Bai Yang

Design and applications of lattice plasmon resonances

09 August 2018

Bharath Bangalore Rajeeva, Linhan Lin & Yuebing Zheng

Silver nanowires with optimized silica coating as versatile plasmonic resonators

07 March 2019

Martin Rothe, Yuhang Zhao, … Oliver Benson

Au@Ag Core–Shell Nanorods Support Plasmonic Fano Resonances

03 April 2020

Ovidio Peña-Rodríguez, Pablo Díaz-Núñez, … Andrés Guerrero-Martínez

Localized Surface Plasmonic Properties of Au and Ag Nanoparticles for Sensors: a Review

02 February 2021

Kanika Khurana & Neena Jaggi

Investigation of compositionally tunable localized surface plasmon resonances (LSPRs) of a series of indium tin oxide nanocrystals prepared by one-step solvothermal synthesis

25 October 2018

Qianwen Li, Shujun Lei, … Weidong Ruan

Resonant Optical Phenomena in Heterogeneous Plasmon Nanostructures of Noble Metals: A Review

01 May 2020

I. M. Krishchenko, É. G. Manoilov, … B. A. Snopok

Plasmonic effects in composite metal nanostructures for sensing applications

11 July 2018

Yuan-Fong Chou Chau, Chung-Ting Chou Chao, … Abdul Hanif Mahadi

Controlled growth of plasmonic heterostructures and their applications

05 March 2020

Yao Zhong, Song Ma, … Qu-Quan Wang

Download PDF

Associated Content

Part of a collection:

Special Topic: Frontiers of Plasmonics

  • Review Article
  • Open Access
  • Published: 07 January 2016

Deviating from the nanorod shape: Shape-dependent plasmonic properties of silver nanorice and nanocarrot structures

  • Hong-Yan Liang1,
  • Hong Wei2 &
  • Hong-Xing Xu1 

Frontiers of Physics volume 11, Article number: 117301 (2016) Cite this article

  • 890 Accesses

  • 13 Citations

  • Metrics details

Abstract

Noble metallic nanostructures exhibit special optical properties resulting from excitation of surface plasmons. Among the various metallic nanostructures, nanorods have attracted particular attention because of their unique and intriguing shape-dependent plasmonic properties. Nanorods can support transverse and longitudinal plasmon modes, the latter ones depending strongly on the aspect ratio of the nanorod. These modes can be routinely tuned from the visible to the near-infrared spectral regions. Although nanorods have been investigated extensively, there are few studies devoted to nanostructures deviating from the nanorod shape. This review provides an overview of recent progress in the development of two kinds of novel quasi-one-dimensional silver nanostructures, nanorice and nanocarrot, including their syntheses, crystalline characterizations, plasmonic property analyses, and performance in plasmonic sensing applications.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  1. W. A. Murray and W. L. Barnes, Plasmonic materials, Adv. Mater. 19(22), 3771 (2007)

    Article  Google Scholar 

  2. H. Wei and H. X. Xu, Plasmonics in composite nanostructures, Mater. Today 17(8), 372 (2014)

    Article  Google Scholar 

  3. L. M. Tong, H. Wei, S. P. Zhang, Z. P. Li, and H. X. Xu, Optical properties of single coupled plasmonic nanoparticles, Phys. Chem. Chem. Phys. 15(12), 4100 (2013)

    Article  Google Scholar 

  4. L. M. Tong and H. X. Xu, Frontiers of plasmonics, Front. Phys. 9(1), 1 (2014)

    Article  ADS  Google Scholar 

  5. O. Stranik, J. Jatschka, A. Csakiand, and W. Fritzsche, Development of new classes of plasmon active nano-structures and their application in bio-sensing and energy guiding, Front. Phys. 9(5), 652 (2014)

    Article  Google Scholar 

  6. K. M. Mayer and J. H. Hafner, Localized surface plasmon resonance sensors, Chem. Rev. 111(6), 3828 (2011)

    Article  Google Scholar 

  7. H. X. Xu, E. J. Bjerneld, M. Kall, and L. Borjesson, Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering, Phys. Rev. Lett. 83(21), 4357 (1999)

    Article  ADS  Google Scholar 

  8. H. X. Xu, J. Aizpurua, M. Kall, and P. Apell, Electromagnetic contributions to single-molecule sensitivity in surfaceenhanced Raman scattering, Phys. Rev. E 62, 4318 (2000)

    Article  ADS  Google Scholar 

  9. H. Y. Liang, Z. P. Li, W. Z. Wang, Y. S. Wu, and H. X. Xu, Highly surface-roughened “flower-like” silver nanoparticles for extremely sensitive substrates of surface-enhanced Raman scattering, Adv. Mater. 21(45), 4614 (2009)

    Article  Google Scholar 

  10. H. Y. Liang, Z. P. Li, Z. X. Wang, W. Z. Wang, F. Rosei, D. L. Ma, and H. X. Xu, Enormous surface-enhanced Raman scattering from dimers of flower-like silver mesoparticles, Small 8(22), 3400 (2012)

    Article  Google Scholar 

  11. H. X. Xu, Theoretical study of coated spherical metallic nanoparticles for single-molecule surface-enhanced spectroscopy, Appl. Phys. Lett. 85(24), 5980 (2004)

    Article  ADS  Google Scholar 

  12. H. Wei and H. X. Xu, Hot spots in different metal nanostructures for plasmon-enhanced Raman spectroscopy, Nanoscale 5(22), 10794 (2013)

    Article  ADS  Google Scholar 

  13. A. M. Michaels, J. Jiang, and L. Brus, Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single Rhodamine 6G molecules, J. Phys. Chem. B 104(50), 11965 (2000)

    Article  Google Scholar 

  14. M. Moskovits, Surface-enhanced Raman spectroscopy: A brief retrospective, J. Raman Spectrosc. 36(6–7), 485 (2005)

    Article  ADS  Google Scholar 

  15. J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, Shell-isolated nanoparticle-enhanced Raman spectroscopy, Nature 464(7287), 392 (2010)

    Article  ADS  Google Scholar 

  16. F. Z. Cong, H. Wei, X. R. Tian, and H. X. Xu, A facile synthesis of branched silver nanowire structures and its applications in surface-enhanced Raman scattering, Front. Phys. 7(5), 521 (2012)

    Article  Google Scholar 

  17. Z. H. Kim, Single-molecule surface-enhanced Raman scattering: Current status and future perspective, Front. Phys. 9(1), 25 (2014)

    Article  Google Scholar 

  18. Y. S. Yamamoto, M. Ishikawa, Y. Ozaki, and T. Itoh, Fundamental studies on enhancement and blinking mechanism of surface-enhanced Raman scattering (SERS) and basic applications of SERS biological sensing, Front. Phys. 9(1), 31 (2014)

    Article  Google Scholar 

  19. L. M. Tong, H. Wei, S. P. Zhang, and H. X. Xu, Recent advances in plasmonic sensors, Sensors 14(5), 7959 (2014)

    Article  Google Scholar 

  20. H. X. Xu and M. Kall, Modeling the optical response of nanoparticle-based surface plasmon resonance sensors, Sens. Actuators B Chem. 87(2), 244 (2002)

    Article  Google Scholar 

  21. H. X. Xu and M. Käll, Surface-plasmon-enhanced optical forces in silver nanoaggregates, Phys. Rev. Lett. 89(24), 246802 (2002)

    Article  ADS  Google Scholar 

  22. F. Svedberg, Z. P. Li, H. X. Xu, and M. Käll, Creating hot nanoparticle pairs for surface-enhanced Raman spectroscopy through optical manipulation, Nano Lett. 6(12), 2639 (2006)

    Article  ADS  Google Scholar 

  23. M. L. Juan, M. Righini, and R. Quidant, Plasmon nanooptical tweezers, Nat. Photonics 5(6), 349 (2011)

    Article  ADS  Google Scholar 

  24. T. Shegai, Z. P. Li, T. Dadosh, Z. Y. Zhang, H. X. Xu, and G. Haran, Managing light polarization via plasmon-molecule interactions within an asymmetric metal nanoparticle trimer, Proc. Natl. Acad. Sci. USA 105(43), 16448 (2008)

    Article  ADS  Google Scholar 

  25. V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters, Chem. Rev. 111(6), 3888 (2011)

    Article  Google Scholar 

  26. Z. P. Li, T. Shegai, G. Haran, and H. X. Xu, Multipleparticle nanoantennas for enormous enhancement and polarization control of light emission, ACS Nano 3(3), 637 (2009)

    Article  Google Scholar 

  27. B. S. Guiton, V. Iberi, S. Li, D. N. Leonard, C. M. Parish, P. G. Kotula, M. Varela, G. C. Schatz, S. J. Pennycook, and J. P. Camden, Correlated optical measurements and plasmon mapping of silver nanorods, Nano Lett. 11(8), 3482 (2011)

    Article  Google Scholar 

  28. A. L. Schmucker, N. Harris, M. J. Banholzer, M. G. Blaber, K. D. Osberg, G. C. Schatz, and C. A. Mirkin, Correlating nanorod structure with experimentally measured and theoretically predicted surface plasmon resonance, ACS Nano 4(9), 5453 (2010)

    Article  Google Scholar 

  29. S. P. Zhang, L. Chen, Y. Z. Huang, and H. X. Xu, Reduced linewidth multipolar plasmon resonances in metal nanorods and related applications, Nanoscale 5(15), 6985 (2013)

    Article  ADS  Google Scholar 

  30. S. Link and M. A. El-Sayed, Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods, J. Phys. Chem. B 103(40), 8410 (1999)

    Article  Google Scholar 

  31. L. Vigderman, B. P. Khanal, and E. R. Zubarev, Functional gold nanorods: Synthesis, self-assembly, and sensing applications., Adv. Mater. 24(36), 4811, 5014 (2012)

    Article  Google Scholar 

  32. J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. G. de Abajo, B. K. Kelley, and T. Mallouk, Optical properties of coupled metallic nanorods for field-enhanced spectroscopy, Phys. Rev. B 71(23), 235420 (2005)

    Article  ADS  Google Scholar 

  33. M. B. Mohamed, V. Volkov, S. Link, and M. A. El-Sayed, The “lightning” gold nanorods: Fluorescence enhancement of over a million compared to the gold metal, Chem. Phys. Lett. 317(6), 517 (2000)

    Article  ADS  Google Scholar 

  34. G. W. Bryant, F. J. García de Abajo, and J. Aizpurua, Mapping the plasmon resonances of metallic nanoantennas, Nano Lett. 8(2), 631 (2008)

    Article  ADS  Google Scholar 

  35. H. Y. Liang, W. Z. Wang, Y. Z. Huang, S. P. Zhang, H. Wei, and H. X. Xu, Controlled synthesis of uniform silver nanospheres, J. Phys. Chem. C 114(16), 7427 (2010)

    Article  Google Scholar 

  36. D. Rossouw and G. A. Botton, Resonant optical excitations in complementary plasmonic nanostructures, Opt. Express 20(7), 6968 (2012)

    Article  ADS  Google Scholar 

  37. A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, Plasmonic nanorod metamaterials for biosensing, Nat. Mater. 8(11), 867 (2009)

    Article  ADS  Google Scholar 

  38. P. Zijlstra, P. M. R. Paulo, and M. Orrit, Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod, Nat. Nanotechnol. 7(6), 379 (2012)

    Article  ADS  Google Scholar 

  39. H. Y. Liang, H. X. Yang, W. Z. Wang, J. Q. Li, and H. X. Xu, High-yield uniform synthesis and microstructuredetermination of rice-shaped silver nanocrystals, J. Am. Chem. Soc. 131(17), 6068 (2009)

    Article  Google Scholar 

  40. H. Y. Liang, D. Rossouw, H. G. Zhao, S. K. Cushing, H. L. Shi, A. Korinek, H. X. Xu, F. Rosei, W. Z. Wang, N. Q. Wu, G. A. Botton, and D. L. Ma, Asymmetric silver “nanocarrot” structures: Solution synthesis and their asymmetric plasmonic resonances, J. Am. Chem. Soc. 135(26), 9616 (2013)

    Article  Google Scholar 

  41. H. Y. Liang, H. G. Zhao, D. Rossouw, W. Z. Wang, H. X. Xu, G. A. Botton, and D. L. Ma, Silver nanorice structures: Oriented attachment-dominated growth, high environmental sensitivity, and real-space visualization of multipolar resonances, Chem. Mater. 24(12), 2339 (2012)

    Article  Google Scholar 

  42. H. Wei, A. Reyes-Coronado, P. Nordlander, J. Aizpurua, and H. X. Xu, Multipolar plasmon resonances in individual Ag nanorice, ACS Nano 4(5), 2649 (2010)

    Article  Google Scholar 

  43. X. Tong, H. Y. Liang, Y. L. Liu, L. Tan, D. L. Ma, and Y. Zhao, Anisotropic optical properties of oriented silver nanorice and nanocarrots in stretched polymer films, Nanoscale 7(19), 8858 (2015)

    Article  ADS  Google Scholar 

  44. F. López-Tejeira, R. Paniagua-Domínguez, and J. A. Sánchez-Gil, High-performance nanosensors based on plasmonic Fano-like interference: Probing refractive index with individual nanorice and nanobelts, ACS Nano 6(10), 8989 (2012)

    Article  Google Scholar 

  45. J. S. Sekhon and S. S. Verma, Refractive index sensitivity analysis of Ag, Au, and Cu nanoparticles, Plasmonics 6(2), 311 (2011)

    Article  Google Scholar 

  46. X. R. Tian, Y. R. Fang, and B. L. Zhang, Multipolar Fano resonances and Fano-assisted optical activity in silver nanorice heterodimers, ACS Photonics 1(11), 1156 (2014)

    Article  Google Scholar 

  47. L. Chen, H. Wei, K. Q. Chen, and H. X. Xu, High-order plasmon resonances in an Ag/Al2O3 core/shell nanorice, Chin. Phys. B 23(2), 027303 (2014)

    Article  ADS  Google Scholar 

  48. S. Shanmukh, L. Jones, J. Driskell, Y. P. Zhao, R. Dluhy, and R. A. Tripp, Rapid and sensitive detection of respiratory virus molecular signatures using a silver nanorod array SERS substrate, Nano Lett. 6(11), 2630 (2006)

    Article  ADS  Google Scholar 

  49. M. Li, S. K. Cushing, H. Y. Liang, S. Suri, D. L. Ma, and N. Q. Wu, Plasmonic nanorice antenna on triangle nanoarray for surface-enhanced Raman scattering detection of hepatitis B virus DNA, Anal. Chem. 85(4), 2072 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Center for Nanoscience and Nanotechnology, School of Physics and Technology, and Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China

    Hong-Yan Liang & Hong-Xing Xu

  2. Institute of Physics, Chinese Academy of Sciences, and Beijing National Laboratory for Condensed Matter Physics, Beijing, 100190, China

    Hong Wei

Authors
  1. Hong-Yan Liang
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Hong Wei
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Hong-Xing Xu
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Hong-Xing Xu.

Additional information

This article is published with open access at www.springer.com/11467 and journal.hep.com.cn/fop

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liang, HY., Wei, H. & Xu, HX. Deviating from the nanorod shape: Shape-dependent plasmonic properties of silver nanorice and nanocarrot structures. Front. Phys. 11, 117301 (2016). https://doi.org/10.1007/s11467-015-0524-7

Download citation

  • Received: 12 July 2015

  • Accepted: 26 October 2015

  • Published: 07 January 2016

  • DOI: https://doi.org/10.1007/s11467-015-0524-7

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • electron energy loss spectroscopy (EELS)
  • localized surface plasmon resonance (LSPR)
  • multipolar longitudinal plasmon mode
  • nanocarrot
  • nanorice
  • plasmonic sensing
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Associated Content

Part of a collection:

Special Topic: Frontiers of Plasmonics

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.