Skip to main content

Advertisement

SpringerLink
  1. Home
  2. Frontiers of Physics
  3. Article
The gluon mass generation mechanism: A concise primer
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Gluon propagator and three-gluon vertex with dynamical quarks

20 February 2020

A. C. Aguilar, F. De Soto, … S. Zafeiropoulos

The seven-gluon amplitude in multi-Regge kinematics beyond leading logarithmic accuracy

21 June 2018

Vittorio Del Duca, Stefan Druc, … Bram Verbeek

Analytic derivation of the nonlinear gluon distribution function

22 February 2022

G. R. Boroun

Gluon dynamics from an ordinary differential equation

20 January 2021

A. C. Aguilar, M. N. Ferreira & J. Papavassiliou

Mass Spectrum of Pseudo-Scalar Glueballs from a Bethe–Salpeter Approach with the Rainbow–Ladder Truncation

28 July 2020

L. P. Kaptari & B. Kämpfer

Pseudoscalar glueball mass: a window on three-gluon interactions

28 January 2020

E. V. Souza, M. N. Ferreira, … S.-S. Xu

Glueballs at high temperature within the hard-wall holographic model

15 February 2022

Matteo Rinaldi & Vicente Vento

The soft-gluon limit and the infrared enhancement of the quark-gluon vertex

29 May 2020

Orlando Oliveira, Tobias Frederico & Wayne de Paula

Celestial IR divergences in general most-subleading-color gluon and gravity amplitudes

25 January 2022

Horatiu Nastase, Francisco Rojas & Carlos Rubio

Download PDF

Associated Content

Part of a collection:

Dyson-Schwinger Equations in Modern Physics and Mathematics (Eds. Mario Pitschmann & Craig D. Roberts)

  • Review Article
  • Open Access
  • Published: 02 February 2016

The gluon mass generation mechanism: A concise primer

  • A. C. Aguilar1,
  • D. Binosi2 &
  • J. Papavassiliou3 

Frontiers of Physics volume 11, Article number: 111203 (2016) Cite this article

  • 780 Accesses

  • 83 Citations

  • 3 Altmetric

  • Metrics details

Abstract

We present a pedagogical overview of the nonperturbative mechanism that endows gluons with a dynamical mass. This analysis is performed based on pure Yang–Mills theories in the Landau gauge, within the theoretical framework that emerges from the combination of the pinch technique with the background field method. In particular, we concentrate on the Schwinger–Dyson equation satisfied by the gluon propagator and examine the necessary conditions for obtaining finite solutions within the infrared region. The role of seagull diagrams receives particular attention, as do the identities that enforce the cancellation of all potential quadratic divergences.We stress the necessity of introducing nonperturbative massless poles in the fully dressed vertices of the theory in order to trigger the Schwinger mechanism, and explain in detail the instrumental role of these poles in maintaining the Becchi–Rouet–Stora–Tyutin symmetry at every step of the mass-generating procedure. The dynamical equation governing the evolution of the gluon mass is derived, and its solutions are determined numerically following implementation of a set of simplifying assumptions. The obtained mass function is positive definite, and exhibits a power law running that is consistent with general arguments based on the operator product expansion in the ultraviolet region. A possible connection between confinement and the presence of an inflection point in the gluon propagator is briefly discussed.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  1. J. M. Cornwall, Dynamical mass generation in continuum QCD, Phys. Rev. D 26, 1453 (1982)

    Article  ADS  Google Scholar 

  2. A. C. Aguilar, A. A. Natale, and P. S. Rodrigues da Silva, Relating a gluon mass scale to an infrared fixed point in pure gauge QCD, Phys. Rev. Lett. 90, 152001 (2003), arXiv: hep-ph/0212105

    Article  ADS  Google Scholar 

  3. A. C. Aguilar, A. Mihara, and A. A. Natale, Phenomenological tests for the freezing of the QCD running coupling constant, Int. J. Mod. Phys. A 19, 249 (2004)

    Article  ADS  Google Scholar 

  4. D. Binosi, Lei Chang, J. Papavassiliou, and C. D. Roberts, Bridging a gap between continuum-QCD and ab initio predictions of hadron observables, Phys. Lett. B 742, 183 (2015), arXiv: 1412.4782 [nucl-th]

    Article  ADS  Google Scholar 

  5. I. C. Cloet and C. D. Roberts, Explanation and prediction of observables using continuum strong QCD, Prog. Part. Nucl. Phys. 77, 1 (2014), arXiv: 1310.2651 [nucl-th]

    Article  ADS  Google Scholar 

  6. C. D. Roberts, Hadron physics and QCD: Just the basic facts, in: 37th BrazilianWorkshop on Nuclear Physics Maresias, S˜ao Paulo, Brazil, September 8–12, 2014 (2015), arXiv: 1501.06581 [nucl-th]

    Google Scholar 

  7. R. Jackiw and K. Johnson, Dynamical model of spontaneously broken gauge symmetries, Phys. Rev. D 8, 2386 (1973)

    Article  ADS  Google Scholar 

  8. R. Jackiw, Dynamical symmetry breaking, in: Erice, Proceedings, Laws of Hadronic Matter, New York, 1975, 225–251 and MIT Cambridge - COO-3069-190 (73, REC. AUG 74), 1973, p. 23

    Google Scholar 

  9. J. M. Cornwall and R. E. Norton, Spontaneous symmetry breaking without scalar mesons, Phys. Rev. D 8, 3338 (1973)

    Article  ADS  Google Scholar 

  10. E. Eichten and F. Feinberg, Dynamical symmetry breaking of nonAbelian gauge symmetries, Phys. Rev. D 10, 3254 (1974)

    Article  ADS  Google Scholar 

  11. E. C. Poggio, E. Tomboulis, and S. H. H. Tye, Dynamical symmetry breaking in non-Abelian field theories, Phys. Rev. D 11, 2839 (1975)

    Article  ADS  Google Scholar 

  12. C. W. Bernard, Adjoint Wilson lines and the effective gluon mass, Nucl. Phys. B 219, 341 (1983)

    Article  ADS  Google Scholar 

  13. J. F. Donoghue, The gluon “mass” in the bag model, Phys. Rev. D 29, 2559 (1984)

    Article  ADS  Google Scholar 

  14. I. L. Bogolubsky, E. M. Ilgenfritz, M. Muller-Preussker, and A. Sternbeck, Lattice gluodynamics computation of Landau gauge Green’s functions in the deep infrared, Phys. Lett. B 676, 69 (2009), arXiv: 0901.0736 [hep-lat]

    Article  ADS  Google Scholar 

  15. I. L. Bogolubsky, E. M. Ilgenfritz, M. Muller-Preussker, and A. Sternbeck, The Landau gauge gluon and ghost propagators in 4D SU(3) gluodynamics in large lattice volumes, arXiv: 0710.1968 [hep-lat]

  16. P. O. Bowman, et al., Scaling behavior and positivity violation of the gluon propagator in full QCD, Phys. Rev. D 76, 094505 (2007), arXiv: hep-lat/0703022

    Article  ADS  Google Scholar 

  17. O. Oliveira and P. J. Silva, The Lattice infrared Landau gauge gluon propagator: The infinite volume limit, PoS LAT 2009, 226 (2009), arXiv: 0910.2897 [hep-lat]

    Google Scholar 

  18. A. Cucchieri and T. Mendes, What’s up with IR gluon and ghost propagators in Landau gauge? A puzzling answer from huge lattices, PoS LAT 2007, 297 (2007), arXiv: 0710.0412 [hep-lat]

    Google Scholar 

  19. A. Cucchieri and T. Mendes, Constraints on the IR behavior of the gluon propagator in Yang–Mills theories, Phys. Rev. Lett. 100, 241601 (2008), arXiv: 0712.3517 [hep-lat]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. A. Cucchieri and T. Mendes, Landau-gauge propagators in Yang–Mills theories at beta = 0: Massive solution versus conformal scaling, Phys. Rev. D 81, 016005 (2010), arXiv: 0904.4033 [hep-lat]

    Article  ADS  Google Scholar 

  21. A. Cucchieri and T. Mendes, Numerical test of the Gribov–Zwanziger scenario in Landau gauge, PoS QCD-TNT 09, 026 (2009), arXiv: 1001.2584 [hep-lat]

    Google Scholar 

  22. A. C. Aguilar, D. Binosi, and J. Papavassiliou, Gluon and ghost propagators in the Landau gauge: Deriving lattice results from Schwinger–Dyson equations, Phys. Rev. D 78, 025010 (2008), arXiv: 0802.1870 [hep-ph]

    Article  ADS  Google Scholar 

  23. A. P. Szczepaniak and E. S. Swanson, Coulomb gauge QCD, confinement, and the constituent representation, Phys. Rev. D 65, 025012 (2002), arXiv: hep-ph/0107078 [hep-ph]

    Google Scholar 

  24. P. Maris and C. D. Roberts, Dyson–Schwinger equations: A Tool for hadron physics, Int. J. Mod. Phys. E12, 297 (2003), arXiv: nucl-th/0301049 [nucl-th]

    Article  ADS  Google Scholar 

  25. A. P. Szczepaniak, Confinement and gluon propagator in Coulomb gauge QCD, Phys. Rev. D 69, 074031 (2004), arXiv: hep-ph/0306030 [hep-ph]

    Article  ADS  Google Scholar 

  26. A. C. Aguilar and A. A. Natale, A dynamical gluon mass solution in a coupled system of the Schwinger–Dyson equations, J. High Energy Phys. 08, 057 (2004), arXiv: hepph/0408254

    Article  ADS  Google Scholar 

  27. K.-I. Kondo, Gauge-invariant gluon mass, infrared Abelian dominance and stability of magnetic vacuum, Phys. Rev. D 74, 125003 (2006), arXiv: hep-th/0609166

    Google Scholar 

  28. J. Braun, H. Gies, and J. M. Pawlowski, Quark confinement from color confinement, Phys. Lett. B 684, 262 (2010), arXiv: 0708.2413 [hep-th]

    Article  ADS  Google Scholar 

  29. D. Epple, H. Reinhardt, W. Schleifenbaum, and A. P. Szczepaniak, Subcritical solution of the Yang–Mills Schroedinger equation in the Coulomb gauge, Phys. Rev. D 77, 085007 (2008), arXiv: 0712.3694 [hep-th]

    Article  ADS  Google Scholar 

  30. Ph. Boucaud, et al., On the IR behaviour of the Landaugauge ghost propagator, J. High Energy Phys. 06, 099 (2008), arXiv: 0803.2161 [hep-ph]

    Article  ADS  Google Scholar 

  31. D. Dudal, J. A. Gracey, S. Paolo Sorella, N. Vandersickel, and H. Verschelde, A refinement of the Gribov–Zwanziger approach in the Landau gauge: Infrared propagators in harmony with the lattice results, Phys. Rev. D 78, 065047 (2008), arXiv: 0806.4348 [hepth]

    Article  ADS  Google Scholar 

  32. C. S. Fischer, A. Maas, and J. M. Pawlowski, On the infrared behavior of Landau gauge Yang–Mills theory, Annals Phys. 324, 2408 (2009), arXiv: 0810.1987 [hep-ph]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. A. P. Szczepaniak and Hrayr H. Matevosyan, A model for QCD ground state with magnetic disorder, Phys. Rev. D 81, 094007 (2010), arXiv: 1003.1901 [hep-ph]

    Article  ADS  Google Scholar 

  34. P. Watson and H. Reinhardt, The Coulomb gauge ghost Dyson–Schwinger equation, Phys. Rev. D 82, 125010 (2010), arXiv: 1007.2583 [hep-th]

    Article  ADS  Google Scholar 

  35. J. Rodriguez-Quintero, On the massive gluon propagator, the PT-BFM scheme and the lowmomentum behaviour of decoupling and scaling DSE solutions, J. High Energy Phys. 1101, 105 (2011), arXiv: 1005.4598 [hep-ph]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. D. R. Campagnari, and H. Reinhardt, Non-Gaussian wave functionals in Coulomb gauge Yang–Mills theory, Phys. Rev. D 82, 105021 (2010), arXiv: 1009.4599 [hep-th]

    Article  ADS  Google Scholar 

  37. M. Tissier and N. Wschebor, Infrared propagators of Yang–Mills theory from perturbation theory, Phys. Rev. D 82, 101701 (2010), arXiv: 1004.1607 [hep-ph]

    Article  ADS  Google Scholar 

  38. M. R. Pennington and D. J. Wilson, Are the dressed gluon and ghost propagators in the Landau gauge presently determined in the confinement regime of QCD? Phys. Rev. D 84, 119901 (2011), arXiv: 1109.2117 [hep-ph]

    Article  ADS  Google Scholar 

  39. P. Watson and H. Reinhardt, Leading order infrared quantum chromodynamics in Coulomb gauge, Phys. Rev. D 85, 025014 (2012), arXiv: 1111.6078 [hep-ph]

    Article  ADS  Google Scholar 

  40. K.-I. Kondo, A low-energy effective Yang–Mills theory for quark and gluon confinement, Phys. Rev. D 84, 061702 (2011), arXiv: 1103.3829 [hep-th]

    Article  ADS  Google Scholar 

  41. F. Siringo, Gluon propagator in Feynman gauge by the method of stationary variance, Phys. Rev. D 90, 094021 (2014), arXiv: 1408.5313 [hep-ph]

    Article  ADS  Google Scholar 

  42. J. S. Schwinger, Gauge invariance and mass, Phys. Rev. 125, 397 (1962)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. J. S. Schwinger, Gauge invariance and mass (2), Phys. Rev. 128, 2425 (1962)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Lectures given by J. P. at the Workshop Dyson–Schwinger Equations in Modern Mathematics and Physics, Trento, September 22–26, 2014

  45. C. D. Roberts and A. G. Williams, Dyson–Schwinger equations and their application to hadronic physics, Prog. Part. Nucl. Phys. 33, 477 (1994), arXiv: hep-ph/9403224

    Article  ADS  Google Scholar 

  46. J. M. Cornwall and J. Papavassiliou, Gauge invariant three gluon vertex in QCD, Phys. Rev. D 40, 3474 (1989)

    Article  ADS  Google Scholar 

  47. D. Binosi and J. Papavassiliou, The pinch technique to all orders, Phys. Rev. D 66, 111901(R) (2002), arXiv: hepph/0208189

    Article  ADS  MathSciNet  Google Scholar 

  48. D. Binosi and J. Papavassiliou, Pinch technique selfenergies and vertices to all orders in perturbation theory, J. Phys. G 30, 203 (2004), arXiv: hep-ph/0301096 [hep-ph]

    Article  ADS  Google Scholar 

  49. D. Binosi and J. Papavassiliou, Pinch technique: Theory and applications, Phys. Rep. 479, 1 (2009), arXiv: 0909.2536 [hep-ph]

    Article  ADS  MathSciNet  Google Scholar 

  50. L. F. Abbott, The background field method beyond one loop, Nucl. Phys. B 185, 189 (1981)

    Article  ADS  Google Scholar 

  51. L. F. Abbott, Introduction to the background field method, Acta Phys. Polon. B 13, 33 (1982)

    MathSciNet  Google Scholar 

  52. A. C. Aguilar and J. Papavassiliou, Gluon mass generation in the PT-BFM scheme, J. High Energy Phys. 12, 012 (2006), arXiv: hep-ph/0610040

    Article  ADS  Google Scholar 

  53. D. Binosi and J. Papavassiliou, Gauge-invariant truncation scheme for the Schwinger–Dyson equations of QCD, Phys. Rev. D 77, 061702 (2008), arXiv: 0712.2707 [hep-ph]

    Article  ADS  Google Scholar 

  54. D. Binosi and J. Papavassiliou, New Schwinger–Dyson equations for non-Abelian gauge theories, J. High Energy Phys. 0811, 063 (2008), arXiv: 0805.3994 [hep-ph]

    Article  ADS  MathSciNet  Google Scholar 

  55. A. C. Aguilar and J. Papavassiliou, Gluon mass generation without seagull divergences, Phys. Rev. D 81, 034003 (2010), arXiv: 0910.4142 [hep-ph]

    Article  ADS  Google Scholar 

  56. A. C. Aguilar, D. Binosi, and J. Papavassiliou, The dynamical equation of the effective gluon mass, Phys. Rev. D 84, 085026 (2011), arXiv: 1107.3968 [hep-ph]

    Article  ADS  Google Scholar 

  57. D. Binosi, D. Iba˜nez, and J. Papavassiliou, The all-order equation of the effective gluon mass, Phys. Rev. D 86, 085033 (2012), arXiv: 1208.1451 [hep-ph]

    Article  ADS  Google Scholar 

  58. N. Nakanishi, Covariant quantization of the electromagnetic field in the landau gauge, Prog. Theor. Phys. 35, 1111 (1966)

    Article  ADS  Google Scholar 

  59. B. Lautrup, Canonical quantum electrodynamics in covariant gauges, Mat. Fys. Medd. Dan. Vid. Selsk. 35, 1 (1966)

    Google Scholar 

  60. C. Becchi, A. Rouet, and R. Stora, Renormalization of the Abelian Higgs–Kibble Model, Commun. Math. Phys. 42, 127 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  61. I. V. Tyutin, Gauge invariance in field theory and statistical physics in operator formalism, LEBEDEV-75-39

  62. K. Fujikawa, B. W. Lee, and A. I. Sanda, Generalized renormalizable gauge formulation of spontaneously broken gauge theories, Phys. Rev. D 6, 2923 (1972)

    Article  ADS  Google Scholar 

  63. D. Binosi and A. Quadri, AntiBRST symmetry and background field method, Phys. Rev. D 88, 085036 (2013), arXiv: 1309.1021 [hep-th]

    Article  ADS  Google Scholar 

  64. D. Binosi and J. Papavassiliou, Pinch technique and the Batalin–Vilkovisky formalism, Phys. Rev. D 66, 025024 (2002), arXiv: hep-ph/0204128 [hep-ph]

    Article  ADS  MathSciNet  Google Scholar 

  65. P. A. Grassi, Tobias Hurth, and Matthias Steinhauser, Practical algebraic renormalization, Ann. Phys. 288, 197 (2001), arXiv: hep-ph/9907426

    Article  ADS  MathSciNet  Google Scholar 

  66. J. S. Ball and T.-W. Chiu, Analytic properties of the vertex function in gauge theories (2), Phys. Rev. D 22, 2550 (1980)

    Article  ADS  Google Scholar 

  67. M. Pelaez, M. Tissier, and N. Wschebor, Three-point correlation functions in Yang–Mills theory, Phys. Rev. D 88, 125003 (2013), arXiv: 1310.2594 [hep-th]

    Article  ADS  Google Scholar 

  68. A. C. Aguilar, D. Binosi, D. Iba˜nez, and J. Papavassiliou, Effects of divergent ghost loops on the Green’s functions of QCD, Phys. Rev. D 89, 085008 (2014), arXiv: 1312.1212 [hep-ph]

    Article  ADS  Google Scholar 

  69. G. Eichmann, R. Williams, R. Alkofer, and M. Vujinovic, The threegluon vertex in Landau gauge, Phys. Rev. D 89, 105014 (2014), arXiv: 1402.1365 [hep-ph]

    Article  ADS  Google Scholar 

  70. A. Blum, M. Q. Huber, M. Mitter, and L. von Smekal, Gluonic three-point correlations in pure Landau gauge QCD, Phys. Rev. D 89, 061703 (2014), arXiv: 1401.0713 [hep-ph]

    Article  ADS  Google Scholar 

  71. P. A. Grassi, T. Hurth, and A. Quadri, On the Landau background gauge fixing and the IR properties of YM Green functions, Phys. Rev. D 70, 105014 (2004), arXiv: hepth/0405104

    Article  ADS  MathSciNet  Google Scholar 

  72. A. C. Aguilar, D. Binosi, J. Papavassiliou, and J. Rodriguez-Quintero, Non-perturbative comparison of QCD effective charges, Phys. Rev. D 80, 085018 (2009), arXiv: 0906.2633 [hep-ph]

    Article  ADS  Google Scholar 

  73. A. C. Aguilar, D. Binosi, and J. Papavassiliou, Indirect determination of the Kugo–Ojima function from lattice data, J. High Energy Phys. 0911, 066 (2009), arXiv: 0907.0153 [hep-ph]

    Article  ADS  Google Scholar 

  74. A. C. Aguilar, D. Binosi, and J. Papavassiliou, QCD effective charges from lattice data, J. High Energy Phys. 1007, 002 (2010), arXiv: 1004.1105 [hep-ph]

    Article  ADS  MATH  Google Scholar 

  75. D. Binosi and J. Papavassiliou, Gauge invariant Ansatz for a special three-gluon vertex, J. High Energy Phys. 1103, 121 (2011), arXiv: 1102.5662 [hep-ph]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  76. K. G. Wilson, Quantum field theory models in less than four-dimensions, Phys. Rev. D 7, 2911 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  77. J. C. Collins, Renormalization: An Introduction to Renormalization, the Renormalization Group, and the Operator Product Expansion, 1984

  78. A. C. Aguilar, D. Ibanez, V. Mathieu, and J. Papavassiliou, Massless bound-state excitations and the Schwinger mechanism in QCD, Phys. Rev. D 85, 014018 (2012), arXiv: 1110.2633 [hep-ph]

    Article  ADS  Google Scholar 

  79. D. Iba˜nez and J. Papavassiliou, Gluon mass generation in the massless bound-state formalism, Phys. Rev. D 87, 034008 (2013), arXiv: 1211.5314 [hep-ph]

    Article  ADS  Google Scholar 

  80. A. C. Aguilar, D. Binosi, and J. Papavassiliou, Renormalization group analysis of the gluon mass equation, Phys. Rev. D 89, 085032 (2014), arXiv: 1401.3631 [hep-ph]

    Article  ADS  Google Scholar 

  81. D. Binosi, D. Iba˜nez, and J. Papavassiliou, Nonperturbative study of the four gluon vertex, J. High Energy Phys. 1409, 059 (2014), arXiv: 1407.3677 [hep-ph]

    Article  ADS  Google Scholar 

  82. A. K. Cyrol, Markus Q. Huber, and Lorenz von Smekal, A Dyson–Schwinger study of the four-gluon vertex, Eur. Phys. J. C 75, 102 (2015), arXiv: 1408.5409 [hep-ph]

    Article  ADS  Google Scholar 

  83. J. M. Cornwall and Wei-Shu Hou, Extension of the gauge technique to broken symmetry and finite temperature, Phys. Rev. D 34, 585 (1986)

    Article  ADS  Google Scholar 

  84. M. Lavelle, Gauge invariant effective gluon mass from the operator product expansion, Phys. Rev. D 44, 26 (1991)

    Article  ADS  Google Scholar 

  85. A. C. Aguilar and J. Papavassiliou, Power-law running of the effective gluon mass, Eur. Phys. J. A 35, 189 (2008), arXiv: 0708.4320 [hep-ph]

    Article  ADS  Google Scholar 

  86. M. J. Lavelle and M. Schaden, Propagators and condensates in QCD, Phys. Lett. B 208, 297 (1988)

    Article  ADS  Google Scholar 

  87. E. Bagan and T. G. Steele, QCD condensates and the Slavnov–Taylor identities, Phys. Lett. B 219, 497 (1989)

    Article  ADS  Google Scholar 

  88. S. J. Brodsky, C. D. Roberts, R. Shrock, and P. C. Tandy, Essence of the vacuum quark condensate, Phys. Rev. C 82, 022201 (2010), arXiv: 1005.4610 [nucl-th]

    Article  ADS  Google Scholar 

  89. L. Del Debbio, M. Faber, J. Greensite, and S. Olejnik, Center dominance and Z(2) vortices in SU(2) lattice gauge theory, Phys. Rev. D 55, 2298 (1997), arXiv: hep-lat/9610005 [hep-lat]

    Article  ADS  Google Scholar 

  90. K. Langfeld, H. Reinhardt, and J. Gattnar, Gluon propagators and quark confinement, Nucl. Phys. B 621, 131 (2002), arXiv: hep-ph/0107141 [hep-ph]

    Article  ADS  MATH  Google Scholar 

  91. See, for example, J. Greensite, The confinement problem in lattice gauge theory, Prog. Theor. Phys. Suppl. 1 (2003), and references therein

  92. J. Gattnar, K. Langfeld, and H. Reinhardt, Signals of con nement in Green functions of SU(2) Yang–Mills theory, Phys. Rev. Lett. 93, 061601 (2004), arXiv: hep-lat/0403011

    Article  ADS  Google Scholar 

  93. J. Greensite, H. Matevosyan, S. Olejnik, M. Quandt, H. Reinhardt, et al., Testing Proposals for the Yang–Mills Vacuum Wavefunctional by Measurement of the Vacuum, Phys. Rev. D 83, 114509 (2011), arXiv: 1102.3941 [hep-lat]

    Article  ADS  Google Scholar 

  94. A. Ayala, A. Bashir, D. Binosi, M. Cristoforetti, and J. Rodriguez-Quintero, Quark avour effects on gluon and ghost propagators, Phys. Rev. D 86, 074512 (2012), arXiv: 1208.0795 [hep-ph]

    Article  ADS  Google Scholar 

  95. A. C. Aguilar, D. Binosi, and J. Papavassiliou, Unquenching the gluon propagator with Schwinger–Dyson equations, Phys. Rev. D 86, 014032 (2012), arXiv: 1204.3868 [hep-ph]

    Article  ADS  Google Scholar 

  96. A. C. Aguilar, D. Binosi, and J. Papavassiliou, Gluon mass generation in the presence of dynamical quarks, Phys. Rev. D 88, 074010 (2013), arXiv: 1304.5936 [hep-ph]

    Article  ADS  Google Scholar 

  97. P. Bicudo, D. Binosi, N. Cardoso, O. Oliveira, and P. J. Silva, The lattice gluon propagator in renormalizable ξ gauges, arXiv: 1505.05897 [hep-lat]

  98. A. C. Aguilar, D. Binosi, and J. Papavassiliou, Yang–Mills two-point functions in linear covariant gauges, Phys. Rev. D 91, 085014 (2015), arXiv: 1501.07150 [hep-ph]

    Article  ADS  MathSciNet  Google Scholar 

  99. M. Q. Huber, Gluon and ghost propagators in linear covariant gauges, Phys. Rev. D 91, 085018 (2015), arXiv: 1502.04057 [hep-ph]

    Article  ADS  MathSciNet  Google Scholar 

  100. F. Siringo, Second order gluon polarization for SU(N) theory in linear covariant gauge, arXiv: 1507.00122 [hep-ph]

  101. M. A. L. Capri, D. Dudal, D. Fiorentini, M. S. Guimaraes, I. F. Justo, A. D. Pereira, B. W. Mintz, L. F. Palhares, R. F. Sobreiro, and S. P. Sorella, Exact nilpotent nonperturbative BRST symmetry for the Gribov–Zwanziger action in the linear covariant gauge, Phys. Rev. D 92, 045039 (2015), arXiv: 1506.06995 [hep-th]

    Article  ADS  Google Scholar 

  102. S. J. Brodsky and R. Shrock, Maximum wavelength of confined quarks and gluons and properties of quantum chromodynamics, Phys. Lett. B 666, 95 (2008), arXiv: 0806.1535 [hep-th]

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. University of Campinas (UNICAMP), “Gleb Wataghin” Institute of Physics 13083-859, Campinas, SP, Brazil

    A. C. Aguilar

  2. European Centre for Theoretical Studies in Nuclear Physics and Related Areas (ECT*) and Fondazione Bruno Kessler, Villa Tambosi, Strada delle Tabarelle 286, I-38123, Villazzano (TN), Italy

    D. Binosi

  3. Department of Theoretical Physics and IFIC, University of Valencia and CSIC, E-46100, Valencia, Spain

    J. Papavassiliou

Authors
  1. A. C. Aguilar
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. D. Binosi
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. J. Papavassiliou
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to J. Papavassiliou.

Additional information

This article is published with open access at www.springer.com/11467 and journal.hep.com.cn/fop

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aguilar, A.C., Binosi, D. & Papavassiliou, J. The gluon mass generation mechanism: A concise primer. Front. Phys. 11, 111203 (2016). https://doi.org/10.1007/s11467-015-0517-6

Download citation

  • Received: 21 July 2015

  • Accepted: 20 September 2015

  • Published: 02 February 2016

  • DOI: https://doi.org/10.1007/s11467-015-0517-6

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • nonperturbative physics
  • Schwinger–Dyson equations
  • dynamical mass generation
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Associated Content

Part of a collection:

Dyson-Schwinger Equations in Modern Physics and Mathematics (Eds. Mario Pitschmann & Craig D. Roberts)

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.